首页> 外文学位 >Nano-structured PECVD silicon films and their device applications.
【24h】

Nano-structured PECVD silicon films and their device applications.

机译:纳米结构PECVD硅膜及其器件应用。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis study, the interaction of Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition (ECR PECVD) deposition conditions and morphology of column-void nano-Si films are further established. The morphology and void fraction are characterized systematically in various ways. It is found that these ECR-PECVD deposited Si films have a column/void structure consisting of three levels of nano-structure: a tapering first level agglomerate (cluster) column structure with widest diameters of 70-80nm in the studied thickness range and a second level of columns that make up the clusters, each with a constant diameter of 10-20nm depending on deposition conditions. The third level arises from the fact that these second level columns are built by the third level 10-20nm diameter elongated nano-crystalline Si blocks of various degree of crystal fraction. The clusters are surrounded by interconnected nano-voids with a radius up to 50nm. The films have a large surface to volume ratio and the nano-crystal size, void size, void content, and specific surface area are tunable through adjusting deposition conditions. The void content and specific surface area are as high as 55 % and 180m2/g, respectively. Highest deposition pressure/lowest microwave power deposition conditions give the largest void content and specific surface area. A growth model is also proposed based on the experimental evidence. This model is used to explain the formation of the tapering first level clusters. The depositions are done at low temperatures and a wide range of substrates can be used for different applications.; Since vapors can easily condense in a small void (pore) due to capillary condensation, a humidity sensor is fabricated based on these nano-structured column/void Si films. This humidity sensor has high-sensitivity (6 order of magnitude of conductivity change in the studied relative humidity range), high-speed (response time less than 1 second), and low hysteresis. Its behavior is reproducible. It can be miniaturized and integrated with signal processing circuits. This humidity sensor's sensitivity and speed of response are the highest that we have seen in the open literature.; Using the nano-column/void Si as a sacrificial material, a two-step separation technology for transferring high temperature fabricated high performance poly-Si thin film transistors onto flexible plastic substrates is developed. High temperature thin film transistor fabrication and transfer tests with this technology have been done. Transferred high performance poly-Si TFTs on plastic substrate are demonstrated and the effects of temperature, light illumination, and mechanical strain on the released TFTs are explored.
机译:本论文的研究进一步建立了电子回旋共振等离子体增强化学气相沉积(ECR PECVD)沉积条件与无空穴纳米硅膜的形貌的相互作用。形态学和空隙率以各种方式被系统地表征。发现这些ECR-PECVD沉积的Si膜具有由三级纳米结构组成的柱/孔结构:在研究的厚度范围内,最大直径为70-80nm的锥形第一级团聚(簇)柱结构。组成簇的第二级柱,根据沉积条件,每个柱的直径恒定为10-20nm。第三级源自以下事实:这些第二级柱由具有不同程度的晶体分数的第三级直径为10-20nm的细长纳米晶体Si块构成。团簇被互连的纳米空隙所包围,半径最大为50nm。所述膜具有大的表面体积比,并且可以通过调节沉积条件来调节纳米晶体尺寸,空隙尺寸,空隙含量和比表面积。空隙含量和比表面积分别高达55%和180m2 / g。最高的沉积压力/最低的微波功率沉积条件可提供最大的空隙含量和比表面积。根据实验证据还提出了一种生长模型。该模型用于解释逐渐变细的一级簇的形成。沉积是在低温下完成的,各种各样的基材可用于不同的应用。由于由于毛细管凝结,蒸气很容易凝结在小的空隙(孔)中,因此基于这些纳米结构的柱/空隙硅膜制造了湿度传感器。该湿度传感器具有高灵敏度(在研究的相对湿度范围内电导率变化为6个数量级),高速(响应时间小于1秒)和低磁滞现象。它的行为是可重现的。它可以被小型化并与信号处理电路集成在一起。该湿度传感器的灵敏度和响应速度是我们在公开文献中看到的最高水平。使用纳米柱/空隙硅作为牺牲材料,开发了一种两步分离技术,用于将高温制造的高性能多晶硅薄膜晶体管转移到柔性塑料基板上。这项技术已经完成了高温薄膜晶体管的制造和转移测试。演示了在塑料基板上转移的高性能多晶硅TFT,并探讨了温度,光照和机械应变对释放的TFT的影响。

著录项

  • 作者

    Li, Handong.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号