首页> 外文学位 >Low-light-level nonlinear optics with rubidium atoms in hollow-core photonic band-gap fibers.
【24h】

Low-light-level nonlinear optics with rubidium atoms in hollow-core photonic band-gap fibers.

机译:空心光子带隙光纤中带有atoms原子的微弱非线性光学。

获取原文
获取原文并翻译 | 示例

摘要

Low-light-level optical nonlinearities are of significant interest for performing operations such as single-photon switching and quantum non-demolition measurements on single-photons. To evoke strong nonlinearities from single-photons, one can enhance the matter-photon interaction using strongly nonlinear materials such as alkali vapors in combination with an appropriate geometry such as a waveguide, which provides a long interaction length while maintaining a small light mode area. We demonstrate for the first time that such a system can be experimentally realized by loading rubidium vapor inside a hollow-core photonic band-gap fiber. Using the technique of light-induced atomic desorption in this geometry, we have generated optical depths greater than 1000. As a proof of principle, we demonstrate electromagnetically induced transparency (EIT) with control powers 1000 times lower than those used for hot vapor cells in a focused beam geometry. Working with such a high aspect ratio geometry requires us to identify and measure the various sources of decoherence via spectroscopy of desorbed atoms in the fiber. Using such techniques, we also estimate the temperature of the desorbing atoms inside the fiber. The desorption mechanism is studied, and we show that pulsed desorption beams of the right amplitude and duration can be used for generating precisely controlled optical depths. Finally, we investigate the use of various buffer gas techniques for increasing the effective transverse path of the atoms as they move across the fiber in order to reduce their ground state decoherence and map this effect as a function of buffer gas pressure.
机译:对于执行诸如单光子切换和单光子量子不爆破测量之类的操作,低光光学非线性具有重大意义。为了唤起单光子的强烈非线性,可以使用强非线性材料(例如碱蒸汽)与适当的几何形状(例如波导)结合使用,以增强物质-光子的相互作用,这样可以提供较长的相互作用长度,同时保持较小的光模面积。我们首次证明,通过在空心光子带隙光纤中加载loading蒸气,可以通过实验实现这种系统。使用这种几何形状的光诱导原子解吸技术,我们产生了大于1000的光学深度。作为原理证明,我们证明了电磁感应透明性(EIT),其控制功率比用于热蒸汽电池的控制功率低1000倍。聚焦光束的几何形状。使用如此高的长宽比几何形状,需要我们通过光谱分析法来识别和测量光纤中解吸原子的各种退相干源。使用这种技术,我们还可以估算纤维内部解吸原子的温度。研究了解吸机理,结果表明,适当振幅和持续时间的脉冲解吸光束可用于产生精确控制的光学深度。最后,我们研究了使用各种缓冲气体技术来增加原子在纤维上移动时的有效横向路径,以减小其基态去相干性,并将此效应映射为缓冲气体压力的函数。

著录项

  • 作者

    Bhagwat, Amar Ramdas.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号