首页> 外文学位 >Rough isometries between non-compact Riemannian manifolds.
【24h】

Rough isometries between non-compact Riemannian manifolds.

机译:非紧黎曼流形之间的粗等距。

获取原文
获取原文并翻译 | 示例

摘要

Rough Isometries, in the sense of M. Kanai [16], preserve geometric properties of Riemannian manifolds such as volume growth rate, isoperimetric dimensions and Sobolev constants, Liouville property, transience of Brow nian motion and Harnack inequalities. In this manuscript we first look at Asymptotic Ends. We show that in a Riemannian manifold asymptotic ends are preserved under rough isometries. Secondly, we study Mappings with Maximal Rank . Here we use the jargon of fiber bundles. These projection-types define a decomposition of each tangent space to the domain, into the orthogonal sum of Horizontal plus Vertical subspaces, where vertical and horizontal mean tangent to the fibers and orthogonal to the fibers, respectively. Motivated by [25] we investigated the question: when is a Riemannian manifold roughly isometric to a Riemannian product manifold? Firstly, for Riemannian submersions, a concept defined in [25], we show that, if the base manifold is compact then the fibers can be roughly isometrically immersed into the domain, and thus the domain is roughly isometric to the product of any fiber and the base space. Under assumptions on the fibers the Riemannian submersion is a rough isometry, and if a fixed fiber is compact then the domain is roughly isometric to the product of that fiber and the base space. For onto maximal rank maps that are not necessarily submersions, by adding assumptions on the Horizontal Vectors Space we have the same consequences. We provide Counterexamples to show that if any of the assumptions are removed those results cease to follow. Finally, as an answer to the question above we provide the main result. We show that for maximal rank onto mappings between Riemannian manifolds with bounded geometry, under assumptions on the fibers and assumptions on the subspaces of horizontal vectors, the domain of such mapping is roughly isometric to the product of the base manifold and a fixed fiber of the domain.
机译:在M. Kanai [16]的意义上,粗糙的Isometries保留了黎曼流形的几何特性,例如体积增长率,等距尺寸和Sobolev常数,Liouville特性,Brow nian运动的瞬变和Harnack不等式。在本手稿中,我们首先介绍渐近端。我们表明,在黎曼流形中,渐近端在粗糙的等距下得以保留。其次,我们研究具有最大秩的映射。在这里,我们使用纤维束的行话。这些投影类型将每个切线空间的分解定义为“水平”与“垂直”子空间的正交和,其中垂直和水平平均分别与纤维相切且与纤维正交。受[25]的启发,我们研究了一个问题:何时黎曼流形与黎曼乘积流形大致等距?首先,对于[25]中定义的黎曼浸入式,我们表明,如果基础歧管是致密的,则纤维可以大致等轴测地浸入域中,因此该域对任何纤维和基础空间。在纤维的假设下,黎曼浸没是一个粗糙的等轴测图,如果固定的纤维是致密的,则该畴与该纤维和基空间的乘积大致等轴测。对于不一定要淹没的最大秩图,通过在水平向量空间上添加假设,我们将得到相同的结果。我们提供了反例,以表明如果删除任何假设,那么这些结果将不再遵循。最后,作为上述问题的答案,我们提供了主要结果。我们显示出,对于有界几何的黎曼流形之间的映射的最大秩,在纤维的假设和水平向量的子空间的假设下,这种映射的范围与基础流形和固定纤维的乘积大致等距域。

著录项

  • 作者

    Suzuki, Cristina Abreu.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号