首页> 外文学位 >Soundness and completeness of formal logics of symmetric encryption.
【24h】

Soundness and completeness of formal logics of symmetric encryption.

机译:对称加密形式逻辑的健全性和完整性。

获取原文
获取原文并翻译 | 示例

摘要

In the last two decades, two major directions in cryptography have developed: formal and computational. The formal approach uses simple, manageable formal language to describe cryptographic protocols; it is amenable to automatization, suitable for computer tools, but its accuracy is often unclear. The computational approach is harder to handle mathematically, involves probability theory and considers limits in computing power; proofs are done by hand, but it is more accurate, hence widely accepted. Much effort has been done to bridge the gap between the two views starting with Martin Abadi and Philip Rogaway in 2000, and followed by many others. These approaches are inspiring, but are worked out only for specific settings, and lack generality.; Our aim is to give a complete, general analysis of the original Abadi-Rogaway approach, including applications to specific settings. The AR approach has three important ingredients: a formal language along with an equivalence notion of formal expressions, a computational cryptosystem with the notion of computational equivalence of ensembles of random distributions, and an interpreting function that assigns to each formal expression an ensemble of distributions. We say that the interpretation satisfies soundness if equivalence of formal expressions implies computational equivalence of their interpretations, and satisfies completeness if computational equivalence of the interpretations requires equivalence of the expressions.; The language of the AR logic uses a box as formal notation for indecipherable strings, through which formal equivalence is defined. We expand the logic by considering different kinds of boxes corresponding to equivalence classes of formal ciphers. We consider not only computational, but also purely probabilistic, information-theoretic interpretations. We establish soundness and completeness for specific interpretations not covered in earlier works: a purely probabilistic one that interprets formal expressions in One-Time Pad, and another one in the so-called type 2 (which-key revealing) cryptosystems based on computational complexity. Furthermore, we present a general, systematic treatment of expansions of the logic as well as general soundness and completeness theorems for the interpretations, and some applications for specific settings.
机译:在过去的二十年中,密码学发展了两个主要方向:形式化和计算性。形式化方法使用简单,易于管理的形式化语言来描述加密协议;它适合于自动化,适用于计算机工具,但其准确性常常不清楚。该计算方法难以用数学方法处理,涉及概率论并考虑了计算能力的限制;证明是手工完成的,但更准确,因此被广泛接受。从2000年的马丁·阿巴迪(Martin Abadi)和菲利普·罗加威(Philip Rogaway)开始,以及随后的许多其他观点,已经做出了许多努力来弥合这两种观点之间的鸿沟。这些方法是鼓舞人心的,但仅针对特定环境而制定,并且缺乏通用性。我们的目的是对原始的Abadi-Rogaway方法进行完整,全面的分析,包括对特定设置的应用。 AR方法具有三个重要成分:形式语言以及形式表达的等价概念;计算密码系统具有随机分布的集合的计算等同性的概念;以及解释函数,为每个形式表达分配一个分布的集合。我们说,如果形式表达的等价意味着它们的解释的计算等价,则解释满足合理性;而如果解释的计算等价要求表达的等价形式,则满足完整性。 AR逻辑的语言使用一个框作为无法解释的字符串的形式表示法,通过它可以定义形式对等。我们通过考虑与形式密码的等价类相对应的不同类型的盒子来扩展逻辑。我们不仅考虑计算,而且考虑纯概率的信息理论解释。我们为早期著作中未涵盖的特定解释建立了稳健性和完整性:这是一种纯概率的解释器,可以在One-Time Pad中解释形式表达,而另一种解释是基于计算复杂性的所谓2型(揭示密钥)密码系统。此外,我们对逻辑扩展以及解释的一般稳健性和完整性定理,以及针对特定设置的某些应用,进行了一般性,系统的处理。

著录项

  • 作者

    Bana, Gergely.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Mathematics.; Computer Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号