首页> 外文学位 >A study of electron transport in the inversion layer of advanced silicon carbide power MOSFETs.
【24h】

A study of electron transport in the inversion layer of advanced silicon carbide power MOSFETs.

机译:对高级碳化硅功率MOSFET的反型层中电子传输的研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses the study of carrier transport in advanced silicon carbide (SiC) power MOS devices. The research focuses on the fabrication, electrical characterization and modeling of advanced SiC devices, including self-aligned lateral MOSFETs, novel surface and buried-channel DiMOS (Double-Implanted MOSFET) devices with particular emphasis on their utilization for power switching applications. The research emphasizes the characterization of electron transport in SiC inversion layers with the development of a physics-based, 2-D quantum-mechanical model to explain the IDS - VGS, gm - VGS device electrical characteristics and the mobility behaviors (muFE, mucon). We also describe a self-aligned device fabrication sequence, an investigation of SiC/SiO 2 interface state density in the inversion regime with a subthreshold-slope method and the charge pumping technique, and the extraction of modeling parameters in these advanced SiC power devices.; In the self-aligned process for the fabrication of DiMOS and lateral MOSFETs, we employ C/Al co-implantation into the p+ regions and phosphorus into n+ regions to improve the activation of implants and reduce the contact resistance while maintaining a low thermal budget.; Interface trap density is a key issue in SiC MOS devices. A high-quality dielectric on a SiC MOSFET is difficult to achieve because of high oxide charges and the large density of interface states at the SiC/SiO2 interface near the conduction band edge. In order to provide an effective insight into the nature of this SiC/SiO2 interface near the conduction band edge, we have employed a subthreshold-slope method to study interface trap density in the inversion region of SiC MOSFETs. The interface trap distributions are extracted for 4H and 6H MOSFETs fabricated on ion-implanted surfaces. The interface trap densities near the conduction band edge are found to be in the range of 5 x 1012∼3 x 1013 cm-2eV-1 for SiC MOSFETs with thermal oxidation process, and 1011∼4 x 1012 cm-2eV-1 for SiC MOSFETs with nitridation anneal process. In addition, we use charge-pumping to characterize the SiC/SiO 2 interface and extract the average midgap interface trap density on 4H-SiC MOSFETs. We employ CGC - VGS measurements to extract oxide thickness and TLM measurements to extract contact resistance for 4H-SiC MOSFETs. In particular, we determine the transconductance (g m), the field-effect mobility (muFE) and conductance mobility (mucon). We compare these measurements with a theoretical model for electron transport in the inversion layer, and obtain 3% accuracy from subthreshold to very strong inversion for a range of substrate biases.; We develop a physics-based, 2-D quantum-mechanical, mobility model for SiC MOS devices, which includes the combined effects of surface roughness and Coulomb scattering. The high density of interface traps near the conduction band edge in SiC MOSFETs precludes the designation of a fixed device threshold voltage and requires the development of a device model to account for this behavior. The Coulomb scattering is modeled with interface traps and fixed oxide charge, while surface roughness assumes a random distribution of spatial fluctuations with a Gaussian distribution. The model is employed to explain the conduction characteristics and mobility behavior of 6H and 4H-SiC MOSFETs at various substrate biases.
机译:本文研究了先进的碳化硅(SiC)功率MOS器件中载流子传输的研究。该研究专注于先进SiC器件的制造,电特性和建模,包括自对准横向MOSFET,新颖的表面和埋沟式DiMOS(双注入MOSFET)器件,尤其着重于其在功率开关应用中的利用。这项研究着重于通过基于物理学的二维量子力学模型的开发来表征SiC反转层中的电子传输,以解释IDS-VGS,gm-VGS器件的电特性和迁移率行为(muFE,mucon) 。我们还描述了一种自对准器件的制造顺序,利用亚阈值斜率方法和电荷泵技术研究了反演状态下SiC / SiO 2界面态密度,并提取了这些先进SiC功率器件的建模参数。 ;在制造DiMOS和横向MOSFET的自对准工艺中,我们将C / Al共注入到p +区域中,将磷注入到n +区域中,以改善注入的激活并降低接触电阻,同时保持较低的热预算。 ;界面陷阱密度是SiC MOS器件中的关键问题。由于高氧化物电荷和导带边缘附近SiC / SiO2界面处的界面态密度大,很难在SiC MOSFET上获得高质量的电介质。为了有效了解导带边缘附近此SiC / SiO2界面的性质,我们采用了亚阈值斜率方法来研究SiC MOSFET反转区域中的界面陷阱密度。对于在离子注入表面上制造的4H和6H MOSFET,提取了界面陷阱分布。对于采用热氧化工艺的SiC MOSFET,导带边缘附近的界面陷阱密度在5 x 1012〜3 x 1013 cm-2eV-1的范围内,而对于SiC则在1011〜4 x 1012 cm-2eV-1的范围内具有氮化退火工艺的MOSFET。此外,我们使用电荷泵来表征SiC / SiO 2界面,并提取4H-SiC MOSFET的平均中间能隙界面陷阱密度。我们使用CGC-VGS测量来提取氧化物厚度,并使用TLM测量来提取4H-SiC MOSFET的接触电阻。特别是,我们确定了跨导(g m),场效应迁移率(muFE)和电导迁移率(mucon)。我们将这些测量值与反型层中电子传输的理论模型进行了比较,对于一定范围的衬底偏置,从亚阈值到非常强的反型都可获得3%的精度。我们为SiC MOS器件开发了基于物理学的二维量子力学迁移率模型,其中包括表面粗糙度和库仑散射的综合影响。 SiC MOSFET的导带边缘附近的界面陷阱的高密度使得无法指定固定的器件阈值电压,因此需要开发一种器件模型来解决这一问题。用界面陷阱和固定的氧化物电荷对库仑散射进行建模,而表面粗糙度假定空间涨落的随机分布具有高斯分布。该模型用于解释6H和4H-SiC MOSFET在各种衬底偏置下的导电特性和迁移率行为。

著录项

  • 作者

    Zeng, Yu (Anne).;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号