首页> 外文学位 >A Categorification of Hall Algebras.
【24h】

A Categorification of Hall Algebras.

机译:霍尔代数的分类。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, there has been great interest in the study of categorification, specifically as it applies to the theory of quantum groups. In this thesis, we would like to provide a new approach to this problem by looking at Hall algebras. It is know, due to Ringel, that a Hall algebra is isomorphic to a certain quantum group. It is our goal to describe a categorification of Hall algebras as a way of doing so for their related quantum groups. To do this, we will take the following steps. First, we describe a new perspective on the structure theory of Hall algebras. This view solves, in a unique way, the classic problem of the multiplication and comultiplication not being compatible. Our solution is to switch to a different underlying category Vect K of vector spaces graded by a group K called the Grothendieck group. We equip this category with a nontrivial braiding which depends on the K-grading. With this braiding and a given antipode, we find that the Hall algebra does become a Hopf algebra object in VectK. Second, we will describe a categorification process, call 'groupoidification', which replaces vector spaces with groupoids and linear operators with 'spans' of groupoids. We will use this process to construct a braided monoidal bicategory which categorifies Vect K via the groupoidification program. Specifically, graded vector spaces will be replaced with groupoids 'over' a fixed groupoid related to the Grothendieck group K. The braiding structure will come from an interesting groupoid EXT(M,N) which will behave like the Euler characteristic for the Grothendieck group K. We will finish with a description of our plan to, in future work, apply the same concept to the structure maps of the Hall algebra, which will eventually give us a Hopf 2-algebra object in our braided monoidal bicategory.
机译:近年来,对分类的研究引起了极大的兴趣,特别是因为它适用于量子群理论。在本文中,我们希望通过研究霍尔代数提供一种解决该问题的新方法。众所周知,由于林格尔,霍尔代数对于某个量子群是同构的。我们的目标是描述Hall代数的分类,以此作为对其相关量子组的一种方式。为此,我们将采取以下步骤。首先,我们描述了霍尔代数结构理论的新观点。这种观点以独特的方式解决了乘法和共乘法不兼容的经典问题。我们的解决方案是切换到向量空间的不同基础类别Vect K,该向量空间由称为Grothendieck组的K组分级。我们为该类别配备了一个非平凡的编织物,该编织物取决于K等级。通过这种编织和给定的对映体,我们发现霍尔代数确实成为VectK中的Hopf代数对象。其次,我们将描述一个分类过程,称为“ groupoidification”,该过程将向量空间替换为groupoids,并将线性运算符替换为groupoid的“ spans”。我们将使用此过程来构造一个编织的单曲面双分类,该分类通过组化程序对Vect K进行分类。具体而言,将在与Grothendieck组K有关的固定组oid上“替换”类群,从而替换梯度向量空间。编织结构将来自有趣的类群EXT(M,N),其行为类似于Grothendieck组K的Euler特征。我们将结束对计划的描述,以便在以后的工作中将相同的概念应用于Hall代数的结构图,该图最终将使我们在编织的等分二元分类中得到Hopf 2代数对象。

著录项

  • 作者

    Walker, Christopher D.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号