首页> 外文学位 >Adaptive magnetorheological sliding seat system for ground vehicles.
【24h】

Adaptive magnetorheological sliding seat system for ground vehicles.

机译:地面车辆的自适应磁流变滑动座椅系统。

获取原文
获取原文并翻译 | 示例

摘要

Magnetorheological (MR) fluids (MRFs) are smart fluids that have reversible field dependent rheological properties that can change rapidly (typically 5--10 ms time constant). Such an MRF can be changed from a free flowing fluid into a semi-solid when exposed to a magnetic field. The rapid, reversible, and continuous field dependent variation in rheological properties can be exploited in an MRF-based damper or energy absorber to provide adaptive vibration and shock mitigation capabilities to varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. Electronically controlled electromagnetic coils are typically used to activate the MR effect and tune the damping force so that feedback control implementation is practical and realizable. MR devices have been demonstrated as successful solutions in semi-active systems combining advantages of both passive and active systems for applications where piston velocities are relatively low (typically 1 m/s), such as seismic mitigation, or vibration isolation. Recently strong interests have focused on employing magnetorheological energy absorbers (MREAs) for high speed impact loads, such as in helicopter cockpit seats for occupant protection in a vertical crash landing. This work presents another novel application of MREAs in this new trend---an adaptive magnetorheological sliding seat (AMSS) system utilizing controllable MREAs to mitigate impact load imparted to the occupant for a ground vehicle in the event of a low speed frontal impact (up to 15 mph).;To accomplish this, a non-linear analytical MREA model based on the Bingham-plastic model and including minor loss effects (denoted as the BPM model) is developed. A design strategy is proposed for MREAs under impact conditions. Using the BPM model, an MREA is designed, fabricated and drop tested up to piston velocities of 5 m/s. The measured data is used to validate the BPM model and the design strategy. The MREA design is then modified for use in the AMSS system and a prototype is built. The prototype MREA is drop tested and its performance, as well as the dynamic behavior in the time domain, is described by the BPM model. Next, theoretical analysis of the AMSS system with two proposed control algorithms is carried out using two modeling approaches: (1) a single-degree-of-freedom (SDOF) rigid occupant (RO) model treating the seat and the occupant as a single rigid mass, and (2) a multi-degree-of-freedom (MDOF) compliant occupant (CO) model interpreting the occupant as three lumped parts---head, torso and pelvis. A general MREA is assumed and characterized by the Bingham-plastic model in the system model. The two control algorithms, named the constant Bingham number or Bic control and the constant stroking force or Fc control, are constructed in such a way that the control objective---to bring the payload to rest while fully utilizing the available stroke---is achieved. Numerical simulations for both rigid and compliant occupant models with assumed system parameter values and a 20 g rectangular crash pulse for initial impact speeds of up to 7 m/s (15.7 mph) show that overall decelerations of the payload are significantly reduced using the AMSS compared to the case of a traditional fixed seat. To experimentally verify the theoretical analysis, a prototype AMSS system is built. The prototype seat system is sled tested in the passive mode (i.e. without control) for initial impact speeds of up to 5.6 m/s and for the 5th percentile female and the 95th percentile male. Using the test data, the CO model is shown to be able to adequately describe the dynamic behavior of the prototype seat system. Utilizing the CO model, the control algorithms for the prototype seat system are developed and a prototype controller is formulated using the DSPACE and SIMULINK real time control environments. The prototype seat system with controller integrated is sled tested for initial impact speeds of up to 5.6 m/s for the 5th female and 95th male (only the 95th male is tested for the Bi c control). The results show that the controllers of both control algorithms successfully bring the seat to rest while fully utilizing the available stroke and the decelerations measured at the seat are substantially mitigated. The CO model is shown to be effective and a useful tool to predict the control inputs of the control algorithms. Thus, the feasibility and effectiveness of the proposed adaptive sliding seat system is theoretically and experimentally verified.
机译:磁流变(MR)流体(MRF)是一种智能流体,具有可逆的与场有关的流变特性,可以快速变化(通常为5--10 ms时间常数)。当暴露于磁场时,这种MRF可以从自由流动的流体变为半固体。可以在基于MRF的减震器或能量吸收器中利用流变特性的快速,可逆和连续的磁场变化来提供自适应的振动和减震功能,以适应变化的有效载荷,振动谱和冲击脉冲以及其他环境因素。电子控制的电磁线圈通常用于激活MR效应并调节阻尼力,从而使反馈控制实现切实可行。 MR设备已被证明是半主动系统的成功解决方案,结合了被动和主动系统的优点,适用于活塞速度相对较低(通常<1 m / s)的应用,例如减震或隔振。近来,人们非常关注将磁流变能量吸收器(MREA)用于高速冲击载荷,例如在直升机驾驶舱座椅中用于垂直坠落着陆时的乘员保护。这项工作提出了MREA在此新趋势中的另一种新颖应用-自适应磁流变滑动座椅(AMSS)系统,该系统利用可控MREA来减轻在低速正面撞击(向上)情况下施加给地面车辆乘员的撞击负荷达到15英里/小时);为实现此目的,开发了基于宾厄姆塑性模型的非线性分析MREA模型,该模型包括较小的损失效应(称为BPM模型)。针对影响条件下的MREA,提出了一种设计策略。使用BPM模型,可以设计,制造MREA并进行跌落测试,直到活塞速度达到5 m / s。测量的数据用于验证BPM模型和设计策略。然后修改MREA设计,以用于AMSS系统并构建原型。 MREA原型经过了跌落测试,其性能以及时域中的动态行为由BPM模型描述。接下来,使用两种建模方法对采用两种提出的控制算法的AMSS系统进行理论分析:(1)将座椅和乘员视为一个单一的单自由度(SDOF)刚性乘员(RO)模型刚性质量;以及(2)符合多自由度(MDOF)的乘员(CO)模型,将乘员解释为三个集总部分-头部,躯干和骨盆。系统模型中的宾汉塑性模型假定并表征了通用MREA。这两种控制算法,分别称为恒定宾厄姆数或Bic控制和恒定行程力或Fc控制,其构造方式应使控制目标-使有效载荷静止,同时充分利用可用行程-已完成。在初始冲击速度高达7 m / s(15.7 mph)的情况下,采用假定的系统参数值和20 g矩形碰撞脉冲的刚性和顺从乘员模型的数值模拟表明,使用AMSS相比,有效载荷的总体减速度明显降低相对于传统的固定座位。为了通过实验验证理论分析,构建了原型AMSS系统。原型座椅系统在被动模式(即无控制)下进行了雪橇测试,初始撞击速度高达5.6 m / s,女性排在第5位,男性排在第95位。使用测试数据,表明CO模型能够充分描述原型座椅系统的动态行为。利用CO模型,开发了原型座椅系统的控制算法,并使用DSPACE和SIMULINK实时控制环境制定了原型控制器。集成了控制器的原型座椅系统已针对第5名女性和第95名男性进行了雪橇测试,初始冲击速度高达5.6 m / s(仅对Bi c控件测试了第95名男性)。结果表明,两种控制算法的控制器都能在充分利用可用行程的同时成功地使座椅静止,从而大大减轻了在座椅处测得的减速度。证明了CO模型是有效的,并且是预测控制算法的控制输入的有用工具。因此,从理论和实验上验证了所提出的自适应滑动座椅系统的可行性和有效性。

著录项

  • 作者

    Mao, Min.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 301 p.
  • 总页数 301
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号