首页> 外文学位 >Stereology and Neuronal Connectivity of the Rat Hippocampus: From 2D Images to 3D Modeling.
【24h】

Stereology and Neuronal Connectivity of the Rat Hippocampus: From 2D Images to 3D Modeling.

机译:大鼠海马的体视学和神经元连通性:从2D图像到3D建模。

获取原文
获取原文并翻译 | 示例

摘要

Synaptic micro-circuit properties in neuronal networks are fundamental to information processing in brain systems. These properties, intrinsic to brain structure, are directly related to neural activity and function. Characterization and mapping the micro-circuitry has been a long standing challenge in mammalian hippocampal research. One of the stumbling blocks in this endeavor is the absence of a construct to integrate the available anatomical knowledge. Thus, integrating hippocampal anatomy from neuronal dendrites to whole-system level may help explain its relation to spatial navigation and episodic memory. This dissertation describes a novel approach to map existing morphological data onto an in-silico based template of the rat hippocampus and address important scientific questions on macroscopic stereology and potential connectivity between various cell types in the hippocampus. Towards this aim, we digitally traced the cytoarchitectural boundaries of the dentate gyrus (DG) and areas CA3/CA1 throughout their entire longitudinal extent from high-resolution images of thin cryostatic sections of adult rat brain. A custom developed computational framework further extends the functionality of this model by transforming the digital trace stack into volumetric representations with arbitrary voxel size. Next, virtually embedding 1.8 million neuronal morphologies stochastically resampled from 244 digital reconstructions, emulated the dense packing of granular and pyramidal layers, and orienting the principal dendritic axes according to local curvature.;Utilizing this unique systems level digital representation, the first part of this research study reports and discusses the macroscopic stereological properties such as volumes, and neuropil occupancy ratios across the various cytoarchitectonic layers of DG & CA regions in the rat hippocampus. The neuropil occupancy reproduced recent electron microscopy data specifically measured in a restricted location. Extension of this analysis across each layer and sub-region throughout the whole longitudinal extent of the hippocampus revealed highly non-homogeneous dendritic density. In CA1, dendritic occupancy was >60% higher temporally than septally (0.46 vs. 0.28). CA3 values varied both across subfields (from 0.35 in CA3b/CA3c to 0.50 in CA3a) and layers (0.48, 0.34, and 0.27 in oriens, radiatum, and lacunosum-moleculare, respectively). Dendritic occupancy was substantially lower in DG, especially in the supra-pyramidal blade (0.18). The computed probability of dendro-dendritic collision significantly correlated with expression of the membrane repulsion signal DSCAM. These heterogeneous stereological properties reflect and complement the non-uniform molecular composition, circuit connectivity, and computational function of the hippocampus across its hippocampal-transverse, longitudinal, and laminar organization.;The second part of this dissertation reports and discusses the potential synaptic connectivity computed by mapping and orienting digital axonal reconstructions of five principal and two CA3 interneuron classes across the CA pyramidal dendritic network within this 3D model. In the mammalian cortex, structural plasticity of spines and boutons makes 'potential synapses' functionally relevant to learning capability and memory capacity. To date, however, potential synapses have only been mapped in the surrounding of a neuron and relative to its local orientation rather than in a system-level anatomical reference. Analyzing connectivity in terms of close spatial appositions between axons and dendrites could thus bridge the opposite scales, from synaptic level to whole systems. We report the potential connectivity onto pyramidal cell dendrites from the axons of a dentate granule cell, three CA3 pyramidal cells, one CA2 pyramidal cell, and 13 CA3b interneurons. The numbers, densities, and distributions of potential synapses were analyzed in each sub-region (e.g. CA3 vs. CA1), layer (e.g. oriens vs. radiatum), and septo-temporal location (e.g. dorsal vs. ventral). The overall ratio between the numbers of actual and potential synapses was ∼0.20 for the granule and CA3 pyramidal cells. All potential connectivity patterns are strikingly dependent on the anatomical location of both pre-synaptic and post-synaptic neurons.
机译:神经网络中的突触微电路特性是大脑系统中信息处理的基础。这些大脑结构固有的特性与神经活动和功能直接相关。表征和绘制微电路图一直是哺乳动物海马研究中的长期挑战。这项工作中的绊脚石之一是缺乏整合可用的解剖学知识的结构。因此,从神经元树突到整个系统水平整合海马解剖可能有助于解释其与空间导航和情节记忆的关系。本文介绍了一种新方法,将现有的形态学数据映射到大鼠海马的基于硅树脂的模板上,并解决了有关宏观立体学和海马不同细胞类型之间潜在连接性的重要科学问题。为了实现这一目标,我们从成年大鼠大脑的低温冷冻切片的高分辨率图像中,数字地追踪了齿状回(DG)和CA3 / CA1区域的整个纵向范围的细胞结构边界。定制开发的计算框架通过将数字轨迹堆栈转换为具有任意体素大小的体积表示形式,进一步扩展了该模型的功能。接下来,从244个数字重建中随机地随机采样180万个神经元形态,模拟颗粒和金字塔层的密集堆积,并根据局部曲率确定主要树突轴的方向;利用这种独特的系统级数字表示,本文的第一部分研究报告报告并讨论了大鼠海马区DG和CA区各个细胞结构层的宏观立体学特性,例如体积和神经纤维占用率。 Neuropil占用率复制了最近在限制位置测量的电子显微镜数据。在整个海马体的整个纵向范围内,跨每个层和子区域进行此分析的结果表明,树突密度非常不均一。在CA1中,树突状细胞的占据时间比间隔时间要高60%(0.46比0.28)。 CA3值跨子域(从CA3b / CA3c中的0.35到CA3a中的0.50)和层(在Oriens,radiatum和lacunosum-moleculareole中分别为0.48、0.34和0.27)变化。 DG中树突状细胞的占有率要低得多,特别是在上金字塔形刀片中(0.18)。树突-树突碰撞的计算概率与膜排斥信号DSCAM的表达显着相关。这些异质的立体特性反映并补充了海马在其横向,纵向和层状组织中海马的不均匀分子组成,电路连通性和计算功能。本论文的第二部分报告并讨论了潜在的突触连通性计算通过在此3D模型中跨CA锥状树突状网络对五个主要和两个CA3中神经元类别的数字轴突重建进行映射和定向。在哺乳动物的皮层中,刺和钮扣的结构可塑性使“潜在突触”在功能上与学习能力和记忆能力有关。然而,迄今为止,潜在的突触仅在神经元的周围并且相对于其局部方向进行了映射,而不是在系统级的解剖学参考中。因此,根据轴突和树突之间紧密的空间位置来分析连通性,可以弥补从突触水平到整个系统的相反尺度。我们报告了从齿状颗粒细胞,三个CA3锥体细胞,一个CA2锥体细胞和13个CA3b interneurons的轴突到锥体细胞树突的潜在连通性。在每个子区域(例如CA3与CA1),层(例如oriens与radiatum)和隔颞位置(例如背侧与腹侧)中分析了潜在突触的数量,密度和分布。对于颗粒细胞和CA3锥体细胞,实际和潜在突触数量之间的总比率为约0.20。所有潜在的连接方式都显着取决于突触前和突触后神经元的解剖位置。

著录项

  • 作者

    Ropireddy, Deepak.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Biology Neurobiology.;Computer Science.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 260 p.
  • 总页数 260
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号