首页> 外文学位 >Nano-scale structures of supramolecules: From fractal bio-microgels to micellar aggregates.
【24h】

Nano-scale structures of supramolecules: From fractal bio-microgels to micellar aggregates.

机译:超分子的纳米级结构:从分形生物微凝胶到胶束聚集体。

获取原文
获取原文并翻译 | 示例

摘要

Supramolecular microgels were produced through self-assembling multifunctional biopolymers with different aggregation forces. Both static and dynamic light scattering were employed to determine the internal morphologies of the microgels in terms of fractal dimension. There are three kinds of functional molecules in the system: three way DNA junctions (TWJ), biotin-ylated PNA molecules and avidin. Microgels can be formed selectively due to avidin-biotin or PNA-DNA combination. The interaction between avidin and biotin molecules has strong structure instruction to aggregation, and very selective, regular and compact aggregation motif was observed in initial microgels. The interaction between PNA and DNA strands possesses weak structure instruction; therefore, irregular and loose topology was found in thermal reversible microgels. The DNA-PNA helices contribute the thermoreversibilty to microgels and make the melting point of microgels adjustable; whereas, the structure formed by avidin-biotin combination is solidified upon formation in our experiments. Fractal structures were observed in both initial and reversible microgels. Fractal dimensions have been obtained from the angular dependence of the scattered intensity from microgels when the sizes of aggregates were large enough. The initial microgels were generated by slowly adding avidin to a solution of biotinylated-PNA bound to the TWJ at room temperature, the observed fractal dimension was around 2.60; while the reversible microgels were formed by cooling melting microgel solution below the melting point of PNA-DNA helices, reversible structure with Df ∼ 1.85 were formed. The fractal dimensions are consistent with the point-cluster and the cluster-cluster aggregation mechanisms, respectively. Thus, the structure of microgels was controlled through different aggregation mechanisms. The relationships between aggregated patterns with the concentration or the molecular configuration of subunits were also studied, and no dependent tendency has been observed in either situation. A narrow size distribution of microgels was found in equilibrium condition and explained in terms of the Flory theory. Enzyme modified avidin molecules were employed to introduce functional moieties into microgels and control the physical dimension of microgels.; Micellar systems also belong to the supramolecular chemistry, and are widely used in industry. Despite this, the structures of the micelles and the transition between their aggregation patterns in a solution are not yet fully studied. Cetyltrimethylammonium p-toluenesulfonate (CTAT) was employed to produce micellar supramolecules in water solution without any salt. (Abstract shortened by UMI.)
机译:超分子微凝胶是通过具有不同聚集力的自组装多功能生物聚合物生产的。静态和动态光散射均用于确定微凝胶的内部形貌,以分形维数表示。系统中存在三种功能分子:三向DNA连接(TWJ),生物素化PNA分子和抗生物素蛋白。由于抗生物素蛋白-生物素或PNA-DNA的组合,可以选择性地形成微凝胶。抗生物素蛋白和生物素分子之间的相互作用具有强烈的聚集结构指示,并且在最初的微凝胶中观察到非常选择性,规则和紧凑的聚集基序。 PNA与DNA链之间的相互作用具有较弱的结构指导;因此,在热可逆微凝胶中发现不规则和松散的拓扑。 DNA-PNA螺旋有助于微凝胶的热可逆性,并使微凝胶的熔点可调节。而在我们的实验中,抗生物素蛋白-生物素结合形成的结构在形成时就被固化了。在初始和可逆的微凝胶中均观察到分形结构。当聚集体的尺寸足够大时,从微凝胶散射强度的角度依赖性获得了分形维数。通过在室温下将抗生物素蛋白缓慢加入结合到TWJ的生物素化PNA溶液中生成初始微凝胶,观察到的分形维数约为2.60;通过将熔化的微凝胶溶液冷却到低于PNA-DNA螺旋的熔点而形成可逆的微凝胶,形成了Df〜1.85的可逆结构。分形维数分别与点群集和群集群集的聚集机制一致。因此,通过不同的聚集机制来控制微凝胶的结构。还研究了聚集模式与亚基浓度或分子构型之间的关系,在两种情况下均未观察到依赖性趋势。在平衡条件下发现了微凝胶的窄尺寸分布,并根据弗洛里理论进行了解释。用酶修饰的抗生物素蛋白分子将功能部分引入微凝胶并控制微凝胶的物理尺寸。胶束系统也属于超分子化学,并广泛用于工业中。尽管如此,还没有对胶束的结构及其在溶液中的聚集模式之间的转变进行充分的研究。对甲苯磺酸十六烷基三甲基铵(CTAT)用于在无盐的水溶液中生产胶束超分子。 (摘要由UMI缩短。)

著录项

  • 作者

    Gu, Zhenyu.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号