首页> 外文学位 >Use of thermal flow analysis and X-ray microtomography to model microstructure evolution in extruded biopolymeric foams.
【24h】

Use of thermal flow analysis and X-ray microtomography to model microstructure evolution in extruded biopolymeric foams.

机译:使用热流分析和X射线显微断层摄影术来模拟挤出的生物聚合物泡沫的微观结构演变。

获取原文
获取原文并翻译 | 示例

摘要

Foaming of polymeric and biopolymeric materials is important in both food and industrial applications. For development of new foams, understanding of the underlying mechanisms of microstructure formation is essential. This work was carried out to aide in understanding the relationships between extrusion processing parameters and material properties of starch-based biopolymer foams. A new technique, X-ray microtomography (XMT), was utilized to investigate foam microstructure. Thermal flow analysis was performed on raw materials using a Phase Transition Analyzer(TM) (PTA). In the first experiment, non-invasive imaging using XMT allowed measurement of cell size distribution and average cell size (0.582 to 2.27 mm), open wall area ratio (0.100 to 0.842) and cell wall thickness (0.047 to 0.087 mm). In the second experiment, combinations of corn starch and whey protein concentrate (WPC, 34% protein) were extruded at two moisture contents (26 and 34% moisture, wb). Product temperature behind the die (Td) was recorded, and differences between Td and softening (Ts) or flow point (Tf) temperatures (T ds and Tdf, respectively), obtained via thermal flow analysis, were used to explain expansion and collapse phenomena, as well as results for physical properties and microstructure of the foams. Relationships existed between Tdf and parameters such as average cell diameter ( R2 = 0.94) and physical void fraction (R 2 = 0.80). In the final experiment, corn starch was extruded at various screw speeds and moisture contents, and XMT and thermal flow analysis were used in combination to develop a conceptual model for extrudate expansion, collapse and microstructure formation as a function of material properties and processing parameters. However, Tds and Tdf did not appear to adequately explain microstructure evolution, so Td was used individually with either Ts or Tf in response surface modeling. Significant relationships were observed between Td and Tf and many physical and microstructure parameters (e.g., R2 = 0.93 and 0.86 for average cell diameter and physical void fraction, respectively). The combination of XMT with thermal flow analysis proved to be a novel and useful way of studying and understanding relationships between extrusion processing parameters, raw material properties and final foam microstructure, expansion and water absorption.
机译:聚合物和生物聚合物材料的发泡在食品和工业应用中都很重要。为了开发新的泡沫,必须了解微观结构形成的潜在机制。进行这项工作有助于理解挤出加工参数与淀粉基生物聚合物泡沫材料性能之间的关系。 X射线显微断层扫描(XMT)是一种新技术,用于研究泡沫的微观结构。使用相变分析仪(PTA)对原材料进行热流分析。在第一个实验中,使用XMT的非侵入性成像可以测量细胞大小分布和平均细胞大小(0.582至2.27 mm),开放壁面积比(0.100至0.842)和细胞壁厚度(0.047至0.087 mm)。在第二个实验中,将玉米淀粉和乳清蛋白浓缩物(WPC,34%的蛋白质)的组合以两种水分含量(26和34%的水分,wb)挤出。记录模具后的产品温度(Td),并通过热流分析获得的Td和软化温度(Ts)或流点温度(Tf)之间的差异(分别为T ds和Tdf)用于解释膨胀和塌陷现象以及泡沫的物理性能和微观结构的结果。 Tdf与参数之间存在关系,例如平均气泡直径(R2 = 0.94)和物理空隙率(R 2 = 0.80)。在最终实验中,玉米淀粉以不同的螺杆速度和水分含量进行挤出,并结合使用XMT和热流分析来开发挤出物膨胀,塌陷和微结构形成的概念模型,该模型取决于材料性能和加工参数。但是,Tds和Tdf似乎不能充分解释微观结构的演变,因此在响应表面建模中将Td与Ts或Tf单独使用。在Td和Tf与许多物理和微观结构参数之间观察到显着的关系(例如,对于平均泡孔直径和物理空隙率,R 2分别为0.93和0.86)。 XMT与热流分析相结合被证明是研究和理解挤出工艺参数,原材料性能和最终泡沫微结构,膨胀和吸水率之间关系的一种新颖而有用的方法。

著录项

  • 作者

    Trater, Allen Martin.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Agriculture Food Science and Technology.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农产品收获、加工及贮藏;
  • 关键词

  • 入库时间 2022-08-17 11:43:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号