首页> 外文学位 >Global analysis, control, and Bayesian estimation of nonlinear dynamic systems using cell-to-cell mapping.
【24h】

Global analysis, control, and Bayesian estimation of nonlinear dynamic systems using cell-to-cell mapping.

机译:使用单元到单元映射的非线性动态系统的全局分析,控制和贝叶斯估计。

获取原文
获取原文并翻译 | 示例

摘要

The analysis of long term behavior of nonlinear dynamic systems and obtaining meaningful data from noisy measurements are two important tasks of process systems engineering. This thesis is focused on global analysis and Bayesian data estimation of nonlinear chemical processes using a cell-to-cell mapping method.; The nature of nonlinear systems is that multiple attractors, including equilibrium state, periodic motions and chaotic motions, can coexist. Thus, different initial conditions can lead to different attractors and each attractor will have a domain of attraction (DOA).; Presently, cell mapping is the only viable method to delineate DOAs. In this thesis, various cell mapping methods have been reviewed and compared. Then, a new tool for global analysis, Generalized Interpolated Cell Mapping (GICM), is proposed. The accuracy and computational efficiency are demonstrated. Then, GICM is used to analyze non-isothermal CSTRs with steady state multiplicity and periodic motions. Effect of parameter on attractors and DOAs are investigated. In addition, GICM is used to quantify the measures of controllability, time optimality and robustness of a PID and simplified n-P controlled CSTR.; This dissertation also discusses data estimation methods. Most existing methods cannot handle nonlinear systems with non-Gaussian errors and/or constraints. Using cell mapping to create a finite state Markov chain, a new Bayesian data rectification method, "Cell Filter" is developed. It works on the discrete probability density function directly. It is capable of handling nonlinear dynamic systems with non-Gaussian errors. A strategy to handle equality and inequality constraints are also proposed. Kalman filter, extend Kalman filter, moving horizon estimator, probability grid filter, and Monte Carlo particle filter are implemented. Simulation examples demonstrate that the proposed cell filter is more accurate, robust and computationally efficient than most other existing methods at least for low dimensional systems.; At last, the application of cell mapping to optimal control has been discussed. Promising result is shown with a CSTR example.
机译:分析非线性动态系统的长期行为并从噪声测量中获取有意义的数据是过程系统工程的两个重要任务。本文的重点是利用细胞间映射方法对非线性化学过程进行全局分析和贝叶斯数据估计。非线性系统的本质是多个吸引子可以并存,包括平衡状态,周期性运动和混沌运动。因此,不同的初始条件可能导致不同的吸引子,并且每个吸引子都有一个吸引域(DOA)。目前,小区映射是描述DOA的唯一可行方法。本文对各种细胞作图方法进行了综述和比较。然后,提出了一种用于全局分析的新工具,即通用插值单元映射(GICM)。证明了准确性和计算效率。然后,将GICM用于分析具有稳态多重性和周期性运动的非等温CSTR。研究了参数对吸引子和DOA的影响。此外,GICM用于量化PID和简化n-P控制CSTR的可控性,时间最优性和鲁棒性的度量。本文还讨论了数据估计方法。大多数现有方法无法处理具有非高斯误差和/或约束的非线性系统。使用单元映射创建有限状态马尔可夫链,开发了一种新的贝叶斯数据校正方法“单元过滤器”。它直接作用于离散概率密度函数。它能够处理具有非高斯误差的非线性动态系统。还提出了一种处理平等和不平等约束的战略。实施了卡尔曼滤波器,扩展卡尔曼滤波器,移动视野估计器,概率网格滤波器和蒙特卡洛粒子滤波器。仿真示例表明,至少对于低维系统,所提出的单元滤波器比大多数其他现有方法更准确,更健壮且计算效率更高。最后,讨论了单元映射在最优控制中的应用。有希望的结果将通过CSTR示例显示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号