首页> 外文学位 >Refractive index chemical sensing with noble metal nanoparticles.
【24h】

Refractive index chemical sensing with noble metal nanoparticles.

机译:贵金属纳米粒子的折射率化学传感。

获取原文
获取原文并翻译 | 示例

摘要

Chemical sensing is a key component in modern society, especially in engineering applications. Because of their widespread impact, improvements to chemical sensors are a significant area of research. One class of sensors, plasmonic sensors, is being heavily researched because of their ability to detect low levels of analyte in near real time without destroying the analyte. This work studies a new class of plasmonic sensor that utilizes diffractive coupling to improve sensor performance. Specifically, this work outlines the first study of diffractive coupling sensors with typical nanoparticle shapes. Sensitivity of this new class of sensor is directly compared to typical localized surface plasmon resonance sensors. Spectral peak location sensitivity was found to be equal to or greater than typical plasmonic sensors. These results were corroborated with numerical simulation with and without nanoparticle interaction to demonstrate the power of harnessing diffractive coupling in nanoparticle sensors.;The sensing results were then extended to analyze ordered arrays of nanorings. Nanorings were chosen because they have the highest reported sensitivity of any plasmonic shape (880 nm/RIU) in the literature and have a high surface area to volume ratio, which is a key parameter for plasmonic sensors. Theoretical simulations of diffractive coupling nanorings indicate that sensitivity is comparable to non-coupling nanorings in the literature (890 nm/RIU vs. 880 nm/RIU, respectively). Another metric of sensor performance, the figure of merit, was much higher (34) than the non-coupling ring (2). Ordered nanoring arrays which exhibit diffractive coupling improve upon current refractive index based plasmonic sensors. Further improvements to nanoring sensors' figure of merit are possible based on simulation results for nanosphere arrays.
机译:化学传感是现代社会,尤其是工程应用中的重要组成部分。由于其广泛的影响,对化学传感器的改进是一个重要的研究领域。一类传感器,等离子传感器,由于能够在不破坏分析物的情况下几乎实时地检测出低水平的分析物,因此正在被大量研究。这项工作研究了一种新型的等离子传感器,该传感器利用衍射耦合来改善传感器性能。具体来说,这项工作概述了具有典型纳米粒子形状的衍射耦合传感器的首次研究。这类新型传感器的灵敏度与典型的局部表面等离振子共振传感器直接进行了比较。发现光谱峰值位置灵敏度等于或大于典型的等离子体传感器。在有或没有纳米粒子相互作用的情况下,通过数值模拟证实了这些结果,从而证明了在纳米粒子传感器中利用衍射耦合的能力。然后将传感结果扩展到分析纳米环的有序阵列。之所以选择纳米环,是因为它们在文献中具有任何等离激元形状(880 nm / RIU)的最高灵敏度,并且表面积/体积比高,这是等离激元传感器的关键参数。衍射耦合纳米环的理论模拟表明,灵敏度与文献中的非耦合纳米环相当(分别为890 nm / RIU与880 nm / RIU)。传感器性能的另一个指标(品质因数)比非耦合环(2)高得多(34)。表现出衍射耦合的有序纳米环阵列在基于当前折射率的等离子体传感器上得到了改善。基于纳米球阵列的仿真结果,可以进一步改善纳米环传感器的品质因数。

著录项

  • 作者

    Blake, Phillip.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Chemistry Inorganic.;Nanotechnology.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号