首页> 外文学位 >Fundamental mechanisms of deuterium retention in lithiated graphite plasma facing surfaces.
【24h】

Fundamental mechanisms of deuterium retention in lithiated graphite plasma facing surfaces.

机译:氘化在面向锂的石墨等离子表面中的基本机理。

获取原文
获取原文并翻译 | 示例

摘要

Plasma impurities and undesirable deuterium recycling degrade plasma confinement and impede a sustainable fusion reaction. This occurs by inducing plasma instabilities and reducing plasma temperature. Lithium wall conditioning has been used in fusion devices including TFTR, CDX-U, FTU, TJ-II, MAST and NSTX as a means to reduce plasma impurities and improve deuterium retention, resulting in significant enhancements in plasma performance. These improvements have come via a reduction in deuterium recycling in addition to a reduction in oxygen and carbon impurities. NSTX, with ATJ graphite walls, is the leading fusion device in lithium research. Many previous studies have investigated deuterated lithium, deuterated graphite, and lithiated graphite in order to understand fundamental properties and particular applications. Deuterium irradiation of lithiated graphite studies are few in number and no systematic research has been conducted to determine the fundamental mechanisms by which deuterium is retained in lithiated graphite.;This work presents controlled laboratory studies that use X-ray photoelectron spectroscopy (XPS) to identify the fundamental chemical interactions in lithiated graphite. Li-O chemical interactions are observed in the photoelectron energy spectrum at 529.5 eV after thermally depositing lithium onto ATJ graphite. Deuterium retention induces Li-O-D and Li-C-D interactions which are observed at 529.9 eV and 291.2 eV, respectively. Examination of NSTX post-mortem tiles confirms the formation of Li-O-D and Li-C-D chemical interactions and validates the procedures in these experiments. Prior to these findings, deuterium was assumed to bind exclusively with lithium to form stoichiometric LiD. Instead, we find that in a graphite matrix, lithium will always bind with oxygen and carbon (when present) prior to the introduction of deuterium. The deuterium saturation of lithiated graphite is also assessed using XPS and results indicate that saturation occurs at a deuterium fluence of ∼ 2.9×10 17 cm−2. This implies that the NSTX deuterium flux of 1017 – 1018 cm−2 s−1 saturates the typical 10-100 nm lithium evaporations after a single plasma discharge.;Atomistic simulations synergistically corroborate the above experimental findings. Experiments show significant influence of oxygen in retaining deuterium. Density functional theory simulations were updated to include oxygen and lithium in a carbon matrix at concentrations observed in experiments (∼20%). Results show that deuterium preferentially chooses to be near and bind with oxygen. Later experiments demonstrate the role of oxygen in retaining deuterium, but also show that lithium is required to attract sucient quantities of oxygen to the surface and to retain the oxygen. This dissertation conclusively demonstrates that the mechanism by which deuterium is retained in lithiated graphite is through a lithium-catalyzed oxygen-deuterium bond..
机译:血浆杂质和不希望的氘再循环会降低血浆限制并阻碍可持续的聚变反应。这是通过引起等离子体不稳定性和降低等离子体温度而发生的。锂壁调节已用于包括TFTR,CDX-U,FTU,TJ-II,MAST和NSTX在内的融合设备中,作为减少血浆杂质和改善氘保留率的手段,从而显着提高了血浆性能。除减少氧气和碳杂质外,还通过减少氘循环来实现这些改进。具有ATJ石墨壁的NSTX是锂研究中的领先融合设备。以前的许多研究都对氘化锂,氘化石墨和锂化石墨进行了研究,以了解基本性能和特殊应用。进行锂化石墨的氘辐照研究的数量很少,还没有进行系统的研究来确定将氘保留在锂化石墨中的基本机理。锂化石墨中的基本化学相互作用。将锂热沉积到ATJ石墨上后,在529.5 eV的光电子能谱中观察到Li-O化学相互作用。氘的保留诱导Li-O-D和Li-C-D相互作用,分别在529.9 eV和291.2 eV处观察到。对NSTX验尸砖的检查确认了Li-O-D和Li-C-D化学相互作用的形成,并验证了这些实验中的步骤。在这些发现之前,假定氘仅与锂结合形成化学计量的LiD。相反,我们发现在石墨基质中,引入氘之前,锂将始终与氧和碳(如果存在)结合。还使用XPS对锂化石墨的氘饱和度进行了评估,结果表明,在2.9×10 17 cm-2的氘注量下会发生饱和。这意味着单次等离子体放电后,NSTX的1017 – 1018 cm-2 s-1氘通量会饱和典型的10-100 nm锂蒸发。原子模拟协同证实了上述实验结果。实验表明氧气对保留氘的影响很大。更新了密度泛函理论模拟,以在实验中观察到的浓度(约20%)下将碳中的氧和锂包括在内。结果表明,氘优先选择靠近氧并与氧结合。后来的实验证明了氧气在保留氘中的作用,但同时也表明,需要锂才能将足够数量的氧气吸引到表面并保留氧气。本论文最终证明了氘在锂化石墨中的保留机理是通过锂催化的氧-氘键。

著录项

  • 作者

    Taylor, Chase N.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号