首页> 外文学位 >Synthese et caracterisation structurale d'epicouches heterogeenes semiconductrices/ ferromagnetiques: le cas d'agregats de MnP encastres dans une matrice de GaP.
【24h】

Synthese et caracterisation structurale d'epicouches heterogeenes semiconductrices/ ferromagnetiques: le cas d'agregats de MnP encastres dans une matrice de GaP.

机译:异质半导体/铁磁外延层的合成和结构表征:以MnP聚集体嵌入GaP基质为例。

获取原文
获取原文并翻译 | 示例

摘要

The general objective of this work is to bring a better understanding of the growth mechanism and the influence of the growth parameters on the microstructure of the heterogeneous magnetic semiconductors layers. Toward this end, we have undertaken a detailed study on the structural characteristics of the GaP:MnP ferromagnetic semiconductor thin films grown by metal organic vapour phase epitaxy (MOVPE). We have focused our effort on three specific objectives: (1) to demonstrate the growth of epitaxial heterogeneous GaP:MnP layers; (2) to establish the influence of the growth parameters on the microstructure of the matrix and nanoclusters; (3) to obtain a detailed structural characterisation of the texture of the clusters as a function of the growth parameters.;We have successfully grown epitaxial heterogeneous GaP:MnP layers without structural defects on GaP substrates at 650°C. The layers contain a uniform ensemble of 15–50 nm quasi-spherical MnP nanoclusters within a dislocation-free GaP epilayer matrix that is fully coherent with the substrate. The clusters occupy 3 to 8% of the total volume of the layer, controlled by the flow of the Mn precursor in the vapor phase. We showed that the growth temperature strongly affect the microstructure of the GaP matrix. At 700°C the surface roughness increases and we have observed 100 nm wide cavities in the GaP matrix. The layers grown at 600°C contain a large density of pile-up defects along GaP{111} facets. To explain these defects we propose the following mechanism: (1) the nucleation of clusters on the GaP growth surface change the morphology of the surrounding matrix; (2) these morphological changes increase the surface roughness and lead to the formation of GaP{111} facets; (3) at 600°C, the probability of the Ga and P atoms to find an epitaxial site on GaP{111} facets is reduced and leads to the formation of pile-up defects.;The detailed microstructural characterization of the GaP:MnP layers have shown that the volume fraction and the dimension of the MnP clusters can be controlled by adjusting the Mn precursor flow rate and the growth temperature, respectively: (1) the volume fraction of the clusters increases with the Mn precursor flow rate; (2) its average dimension increases with the growth temperature. Our work reveals that 80-90% of the clusters were orthorhombic-MnP and 10-20% were hexagonal Mn2P in layer grown at 650°C on GaP(001) substrates. The formation of Mn2P clusters can be reduced by decreasing the growth temperature and can be avoided by growing on GaP(011) substrates.;Our 3D reciprocal space maps measurements have enabled, for the first time, a precise description of the texture of the clusters as a function of the growth temperature, the layer thickness and the substrate orientation. Our results reveal that the orthorhombic MnP nanoclusters are highly textured and distributed in six crystallographic orientation families. They principally grow on GaP(001) and GaP{111} facets with a small fraction of cluster nucleating on higher-index GaP{hhl} facets. Most of epitaxial alignments share a similar component: the MnP(001) plane (c-axis plane) is parallel to the GaP{110} plane family. Along with the diffraction signals indicating specific epitaxial relationships with the substrate, we report the presence of axiotaxial ordering between a certain fraction of the MnP clusters and the GaP matrix.;The texture characterization as a function of the growth parameters revealed that the MnP texture results from a complex growth process, with combined effects of the GaP matrix morphology, the lattice mismatch at the cluster/matrix interface, and the bonding configuration of the GaP seed planes. We propose a qualitative growth model that explains the order of appearance of the various cluster families and the evolution of the proportion of clusters in the different orientations with increasing film thickness. Finally, we have compared the crystallographic orientation of the MnP clusters determined from 3D reciprocal space mapping with those obtained from magnetic measurements. The agreement between the two sets of results confirms that the effective magnetic properties of the heterogeneous layer can be tuned by controlling the texture of the ferromagnetic nanoclusters. (Abstract shortened by UMI.).
机译:这项工作的总体目标是使人们更好地理解生长机理以及生长参数对异质磁性半导体层微观结构的影响。为此,我们对通过金属有机气相外延(MOVPE)生长的GaP:MnP铁磁半导体薄膜的结构特性进行了详细研究。我们将工作重点放在三个具体目标上:(1)证明外延异质GaP:MnP层的生长; (2)建立生长参数对基质和纳米团簇的微观结构的影响; (3)根据生长参数获得簇结构的详细结构特征。;我们已成功地在650°C下在GaP衬底上生长了无结构缺陷的外延异质GaP:MnP层。在无位错的GaP外延层基体中,这些层包含15–50 nm的准球形MnP纳米团簇的均匀集合体,该基团与基底完全粘合。团簇占层总体积的3%至8%,受Mn前驱体在气相中的流动控制。我们表明,生长温度强烈影响GaP基质的微观结构。在700°C时,表面粗糙度增加,我们在GaP基质中观察到了100 nm宽的空腔。在600°C下生长的层沿GaP {111}面包含大量密度的堆积缺陷。为了解释这些缺陷,我们提出以下机制:(1)GaP生长表面上簇的成核改变周围基质的形态; (2)这些形态变化增加了表面粗糙度并导致GaP {111}小面的形成; (3)在600°C下,Ga和P原子在GaP {111}面上发现外延位点的可能性降低,并导致堆积缺陷的形成。; GaP:MnP的详细微观结构表征层表明,可以分别通过调节Mn前驱体流速和生长温度来控制MnP簇的体积分数和尺寸:(1)簇的体积分数随Mn前驱体流速而增加; (2)其平均尺寸随生长温度的增加而增加。我们的工作表明,在650°C的GaP(001)衬底上生长的层中,80-90%的簇是正交晶状MnP,10-20%的是六角形Mn2P。 Mn2P团簇的形成可以通过降低生长温度来减少,并且可以通过在GaP(011)衬底上生长来避免。;我们的3D交互空间图测量首次实现了对团簇纹理的精确描述取决于生长温度,层厚度和衬底取向。我们的研究结果表明,正交晶型的MnP纳米簇具有很高的织构并分布在六个晶体学取向家族中。它们主要在GaP(001)和GaP {111}面上生长,而一小部分簇在较高指数的GaP {hhl}面上成核。大多数外延排列共享相似的成分:MnP(001)平面(c轴平面)平行于GaP {110}平面族。连同表明与衬底特定外延关系的衍射信号一起,我们报告了MnP团簇的某些部分和GaP基质之间存在轴心有序排列;;作为生长参数的函数的纹理表征表明MnP纹理结果GaP基质形态,簇/矩阵界面处的晶格失配以及GaP晶种键合构型的综合影响,从复杂的生长过程中得到的结果。我们提出了定性增长模型,该模型解释了各种簇族的出现顺序以及随着膜厚度的增加,不同方向上簇的比例的演变。最后,我们比较了从3D倒数空间映射确定的MnP簇的晶体学取向与从磁测量获得的晶体取向。两组结果之间的一致性证实,可以通过控制铁磁纳米团簇的织构来调整异质层的有效磁性能。 (摘要由UMI缩短。)。

著录项

  • 作者

    Lambert-Milot, Samuel.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 289 p.
  • 总页数 289
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号