首页> 外文学位 >Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells.
【24h】

Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells.

机译:贵金属纳米粒子的仿生合成及其在燃料电池中作为电催化剂的应用。

获取原文
获取原文并翻译 | 示例

摘要

Today, proton electrolyte membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are attractive power conversion devices that generate fairly low or even no pollution, and considered to be potential to replace conventional fossil fuel based power sources on automobiles. The operation and performance of PEMFC and DMFC depend largely on electro-catalysts positioned between the electrode and the membranes. The most commonly used electro-catalysts for PEMFC and DMFC are Pt-based noble metal nanoparticles, so catalysts share close to 50% of the total cost of the fuel cell. The synthesis of such nanoscale electro-catalysts are commonly limited to harsh conditions (high temperature, high pressure), organic solvent, high amount of stabilizing agent, to achieve the size and morphological control. There is no rational guideline for the selection of stabilizing agent for specific materials, leading to the current "trial and error" approach in selecting stabilizing agent.;This dissertation initially explores a new way to select material-specific stabilizing agents for the synthesis of the noble metal nanoparticles. With the help of phage display (PD) technique, a rational biomimetic approach can be used to select biomolecule (peptide) that specifically recognizes the surface of targeted material (use Pt as a case-study for this dissertation), and the selected peptides can be used as stabilizing agent to synthesize monodispersed Pt nanoparticles with tunable morphologies under mild synthetic conditions (atmospheric room temperature, aqueous solution). With fairly easy processing, the nanoparticles can be used as high surface area cathode electro-catalyst in fuel cells.;With the as-synthesized Pt nanoparticles, bimetallic nanoparticles containing Pt can be prepared for more electro-catalytic applications, such as the oxygen reduction reaction at the cathode of fuel cells, and the oxidation of methanol at the anode in DMFC. The materials synthesized include heterogeneously structured Pt-Pd core-shell nanoparticles, and homogenerously alloyed PtRu nanoparticles. The Pt-Pd core-shell nanoparticles, with Pd shell thickness controlled with atomic-layer precision, show almost 3-fold enhancement in catalytic activity for the ORR as well as better catalytic performance in oxidation of methanol, compared with commercially available catalysts. A specialized electrochemical tool, rotating disk electrode, is used to study the fundamental kinetics and their quantified catalytic activities in ORR. The seed-mediated synthesis of hyperbranched PtRu nanoparticles demonstrates the possibility of low-temperature synthesis of well-alloyed material, and shows the enhanced catalytic activity in methanol oxidation compared with commercial catalysts, with its special formation mechanism studied.
机译:如今,质子电解质膜燃料电池(PEMFC)和直接甲醇燃料电池(DMFC)是有吸引力的功率转换设备,其产生的污染极低,甚至无污染,并被认为有可能取代汽车上传统的基于化石燃料的电源。 PEMFC和DMFC的操作和性能在很大程度上取决于位于电极和膜之间的电催化剂。 PEMFC和DMFC最常用的电催化剂是基于Pt的贵金属纳米颗粒,因此催化剂占燃料电池总成本的近50%。此类纳米级电催化剂的合成通常限于苛刻的条件(高温,高压),有机溶剂,大量的稳定剂,以实现尺寸和形态控制。对于特定材料的稳定剂的选择没有合理的指导方针,导致目前选择稳定剂的“试错法”。本文首先探讨了一种选择特定材料的稳定剂用于合成稳定剂的新方法。贵金属纳米粒子。借助噬菌体展示(PD)技术,可以使用合理的仿生方法来选择能够特异性识别目标物质表面的生物分子(肽)(本文以Pt为案例研究),并且可以选择用作稳定剂,可在温和的合成条件下(大气室温,水溶液)合成形态可调的单分散Pt纳米颗粒。通过相当容易的加工,该纳米颗粒可以用作燃料电池中的高表面积阴极电催化剂。通过合成的Pt纳米颗粒,可以制备含Pt的双金属纳米颗粒,用于更多的电催化应用,例如氧还原燃料电池阴极发生反应,DMFC中阳极发生甲醇氧化。合成的材料包括异质结构的Pt-Pd核壳纳米粒子和均质的PtRu纳米粒子。与市售催化剂相比,具有原子层精度控制的Pd壳厚度的Pt-Pd核壳纳米颗粒显示出对ORR的催化活性几乎提高了3倍,并且在甲醇氧化中表现出更好的催化性能。使用专门的电化学工具旋转圆盘电极来研究ORR的基本动力学及其定量催化活性。种子介导的超支化PtRu纳米粒子的合成证明了低温合成良好合金材料的可能性,并且与商业催化剂相比,其显示出了比商业催化剂更高的甲醇氧化催化活性,并研究了其特殊的形成机理。

著录项

  • 作者

    Li, Yujing.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Chemistry Biochemistry.;Engineering Materials Science.;Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号