首页> 外文学位 >Multiscale mechanics of carbon nanotubes and graphene.
【24h】

Multiscale mechanics of carbon nanotubes and graphene.

机译:碳纳米管和石墨烯的多尺度力学。

获取原文
获取原文并翻译 | 示例

摘要

Graphene, a single sheet of graphite, has recently emerged as one of the most exciting material systems to study, propelled by the discovery of unusual fundamental physical phenomena such as unconventional quantum Hall effects and surprisingly high room-temperature electron mobility. The intense interest on graphene arises also because of its structure stability despite being as a single atomic layer. The discovery of these novel physical properties of graphene has inspired an endeavor that may lead to the establishment of an entirely new technological platform based on graphene rather than silicon with superior performance. Such a monumental push for new technologies, however, requires a deep physical understanding of the deformation, failure, and the coupled thermo-mechanical-electrical properties of this emergent material system.;This thesis contributes to the multiscale mechanics of graphene and its curved version, carbon nanotubes (CNT). As a one-atom-thick film with large ratio of the in-plane rigidity to out-of-plane bending rigidity, a monolayer graphene ripples even only under the thermal fluctuation. For layered graphene or multi-walled CNTs (MWCNTs), the interplay between the interlayer interactions and in-plane deformation energies often leads to ordered deformation patterns under external loadings. The deformation morphologies of graphene and CNTs not only change their mechanical properties, but only affect their electronic properties. Understanding the deformation morphologies and the kinetics of the defects in graphene and CNTs is critical to the engineering and fabrication of the graphene/CNT-based devices.;Enormous efforts have been undertaken in computationally modeling the deformation morphologies and defect motion in graphene. Classical single-scale methods such as quantum mechanical, molecular dynamics, and continuum mechanics simulations suffer from either length scale and time scale limitations or simulation accuracy. To achieve both physical accuracy and computational efficiency, this thesis strives to develop novel multiscale modeling approaches to bridge phenomena across different length and time scales. In particular, for pristine graphene and CNTs, the interatomic potentials are seamlessly cast into the constitutive relations of the finite crystal elasticity theories for atomic membranes. For interlayer bridged MWCNTs, the interlayer force-separation relations obtained from atomistic simulations are embedded into the continuum level constitutive relations through hierarchical message passing. To overcome the time scale barriers of molecular dynamics simulations, minimum energy paths and the transition states of various atomic processes are determined using the pathway sampling schemes such as the nudged elastic band (NEB) method.;The multiscale modeling approaches enabled large-scale simulations of CNTs and graphene, and revealed a range of interesting deformation phenomena, typically inaccessible to previous single-scale models. For pristine MWCNTs, a variety of ordered deformation patterns such as periodic rippling were identified under different loading conditions, which are in distinct comparison to the local sharp buckling phenomena observed in SWCNTs. For interlayer bridged MWCNTs, the presence of inter-wall covalent bridges not only enhances the post-buckling rigidities of the MWCNTs, but also modifies the deformation morphologies and morphology pathways of MWCNTs. For defected graphene and CNTs, we found that chemical addictives such as hydrogen and oxygen atom regulate the fracture paths. Further, the migration barrier and direction of defects and adatoms (such as Li) strongly depend on the applied stress and strain. The findings from the thesis research are not only scientifically significant, but also offer guidance to the engineering of MWCNTs and graphene as next-generation electronic nanodevices.
机译:石墨烯是单片石墨,最近已成为研究最令人兴奋的材料系统之一,这是由于发现了非同寻常的基本物理现象,例如非常规的量子霍尔效应和出乎意料的高室温电子迁移率。尽管石墨烯是单原子层,但由于其结构的稳定性,引起了人们极大的兴趣。石墨烯的这些新颖物理特性的发现激发了人们的努力,这可能导致建立基于石墨烯而不是具有优异性能的硅的全新技术平台。然而,对新技术的如此巨大的推动,需要对这种新兴材料系统的变形,破坏以及热机械电耦合特性有深刻的物理理解。;本文为石墨烯及其弯曲形式的多尺度力学做出了贡献,碳纳米管(CNT)。作为具有大的面内刚性与面外弯曲刚性之比的单原子厚膜,即使在热波动下,单层石墨烯也会起伏。对于层状石墨烯或多层CNT(MWCNT),层间相互作用和平面内形变能之间的相互作用通常会导致外部载荷下的有序形变。石墨烯和碳纳米管的变形形态不仅改变其机械性能,而且仅影响其电子性能。了解石墨烯和碳纳米管中的形貌和缺陷动力学对于石墨烯/碳纳米管基器件的工程设计和制造至关重要。在计算建模中石墨烯的形貌和缺陷运动方面已经付出了巨大的努力。诸如量子力学,分子动力学和连续体力学模拟之类的经典单尺度方法受到长度尺度和时间尺度限制或模拟精度的困扰。为了同时达到物理精度和计算效率,本论文致力于开发新颖的多尺度建模方法,以跨越不同长度和时间尺度上的现象。特别是对于原始石墨烯和碳纳米管,原子间电势被无缝地转换为原子膜的有限晶体弹性理论的本构关系。对于层间桥接的MWCNT,通过分层消息传递,将从原子模拟获得的层间力-分离关系嵌入到连续层本构关系中。为了克服分子动力学模拟的时间尺度障碍,使用诸如轻推弹性带(NEB)方法之类的路径采样方案确定了最小能量路径和各种原子过程的跃迁状态;多尺度建模方法实现了大规模模拟碳纳米管和石墨烯的研究,揭示了一系列有趣的变形现象,通常是以前的单比例模型无法获得的。对于原始的MWCNT,在不同的载荷条件下,发现了各种有序的变形模式,例如周期性的波纹,这与SWCNT中观察到的局部急剧屈曲现象有明显的比较。对于层间桥接的MWCNT,壁间共价桥的存在不仅增强了MWCNT的屈曲后刚度,而且改变了MWCNT的变形形态和形态路径。对于有缺陷的石墨烯和碳纳米管,我们发现化学成瘾剂(例如氢和氧原子)调节断裂路径。此外,缺陷和吸附物(例如Li)的迁移势垒和方向在很大程度上取决于所施加的应力和应变。论文研究的发现不仅具有科学意义,而且对作为下一代电子纳米器件的MWCNTs和石墨烯的工程设计也提供了指导。

著录项

  • 作者

    Huang, Xu.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号