首页> 美国卫生研究院文献>Tissue Engineering. Part C Methods >Multiscale Photoacoustic Microscopy of Single-Walled Carbon Nanotube-Incorporated Tissue Engineering Scaffolds
【2h】

Multiscale Photoacoustic Microscopy of Single-Walled Carbon Nanotube-Incorporated Tissue Engineering Scaffolds

机译:单壁碳纳米管结合组织工程支架的多尺度光声显微镜。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Three-dimensional polymeric scaffolds provide structural support and function as substrates for cells and bioactive molecules necessary for tissue regeneration. Noninvasive real-time imaging of scaffolds and/or the process of tissue formation within the scaffold remains a challenge. Microcomputed tomography, the widely used technique to characterize polymeric scaffolds, shows poor contrast for scaffolds immersed in biological fluids, thereby limiting its utilities under physiological conditions. In this article, multiscale photoacoustic microscopy (PAM), consisting of both acoustic-resolution PAM (AR-PAM) and optical-resolution PAM (OR-PAM), was employed to image and characterize single-walled carbon-nanotube (SWNT)–incorporated poly(lactic-co-glycolic acid) polymer scaffolds immersed in biological buffer. SWNTs were incorporated to reinforce the mechanical properties of the scaffolds, and to enhance the photoacoustic signal from the scaffolds. By choosing excitation wavelengths of 570 and 638 nm, multiscale PAM could spectroscopically differentiate the photoacoustic signals generated from blood and from carbon-nanotube-incorporated scaffolds. OR-PAM, providing a fine lateral resolution of 2.6 μm with an adequate tissue penetration of 660 μm, successfully quantified the average porosity and pore size of the scaffolds to be 86.5%±1.2% and 153±15 μm in diameter, respectively. AR-PAM further extended the tissue penetration to 2 mm at the expense of lateral resolution (45 μm). Our results suggest that PAM is a promising tool for noninvasive real-time imaging and monitoring of tissue engineering scaffolds in vitro, and in vivo under physiological conditions.
机译:三维聚合物支架提供结构支撑,并充当组织再生所必需的细胞和生物活性分子的底物。支架和/或支架内组织形成过程的无创实时成像仍然是一个挑战。微计算机断层扫描是表征聚合物支架的一种广泛使用的技术,对于浸没在生物流体中的支架显示出较差的对比度,从而限制了其在生理条件下的效用。在本文中,由声分辨PAM(AR-PAM)和光学分辨PAM(OR-PAM)组成的多尺度光声显微镜(PAM)用于成像和表征单壁碳纳米管(SWNT)–掺入的聚乳酸-乙醇酸共聚物支架浸入生物缓冲液中。掺入SWNT以增强支架的机械性能,并增强来自支架的光声信号。通过选择570和638nm的激发波长,多尺度PAM可以在光谱上区分血液和碳纳米管结合的支架产生的光声信号。 OR-PAM的横向分辨率为2.6μm,组织穿透力为660μm,成功地将支架的平均孔隙率和孔径定为直径的86.5%±1.2%和153±15μm。 AR-PAM进一步将组织穿透力扩大到2毫米,而牺牲了横向分辨率(45微米)。我们的结果表明,PAM是一种有前途的工具,可用于在体外和体内在生理条件下对组织工程支架进行无创实时成像和监测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号