首页> 外文学位 >Mucosal alpha-glucosidase hydrolysis properties and the control of glucogenesis.
【24h】

Mucosal alpha-glucosidase hydrolysis properties and the control of glucogenesis.

机译:粘膜α-葡萄糖苷酶的水解特性和葡萄糖生成的控制。

获取原文
获取原文并翻译 | 示例

摘要

The mucosal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) have two catalytic α-glucosidases each at C- and N-terminal domains (ctMGAM, ntMGAM, ctSI, and ntSI). These four α-glucosidases are involved in the digestion of glycemic carbohydrates (e.g., starch and sucrose) to monosaccharides in the small intestine. In this research, the hydrolytic properties of mucosal α-glucosidases on glycemic carbohydrates were investigated with the aim to control the rate of glucogenesis.;First, individual α-glucosidases were tested with disaccharides of various α-glycosidic linkages and compositional types, and were found to respond differently. Also, maltase activity was competitively inhibited in the presence of sucrose, particularly in the case of ctMGAM. Second, hydrolytic properties of the four α-glucosidases on differently α-amylolyzed starches were demonstrated. Partially hydrolyzed WCS was preferably hydrolyzed by ctMGAM, while fully α-amylolyzed WCS (α-limit dextrins) was hydrolyzed by all four α-glucosidases. These results suggest that inhibition of the ctMGAM reaction may lead to a delay in initial glucose release in the duodenum and proximal jejunum that would both moderate the glycemic peak and extend digestion distally. Third, highly branched structures were enzymatically-synthesized from WCS to demonstrate slow digesting properties at the four α-glucosidases levels. The study revealed that the rate of glucogenesis was decelerated when there was a high proportion of branched α-limit dextrins and a high degree of branching. Fourth, the concept of "toggling" through differential inhibition of α-glucosidases was applied to examine refined control on glucogenesis with the goal of slow glucose delivery to the body rather than total inhibition. Notably, the α-glucosidases were differently inhibited by the inhibitors.;These findings can potentially be applied to extend postprandial glucose response by controlling α-glucosidase activity related to some common chronic disorders (e.g., Type II diabetes and obesity). Ultimately, these investigations provide an important insight into the mechanism of digestion of glycemic carbohydrates by the four mucosal α-glucosidases, and may be applied to study further the relationship between properties of glucose delivery and physiologic-related responses (e.g., gastric emptying, hormone response, food intake, energy balance).
机译:粘膜麦芽糖酶-葡糖淀粉酶(MGAM)和蔗糖酶-异麦芽糖酶(SI)在C和N端域(ctMGAM,ntMGAM,ctSI和ntSI)分别具有两个催化性α-葡萄糖苷酶。这四种α-葡萄糖苷酶参与了将糖化碳水化合物(例如淀粉和蔗糖)消化成小肠中的单糖的过程。在这项研究中,研究了粘膜α-葡萄糖苷酶在糖类碳水化合物上的水解特性,目的是控制葡萄糖的生成速率。首先,用各种α-糖苷键和组成类型的二糖对单个α-葡萄糖苷酶进行了测试。被发现有不同的反应。同样,在蔗糖存在下,麦芽糖酶活性被竞争性抑制,特别是在ctMGAM的情况下。其次,证明了四种α-葡萄糖苷酶在不同α-淀粉水解淀粉上的水解特性。优选部分水解的WCS通过ctMGAM水解,而完全α-淀粉水解的WCS(α-极限糊精)被所有四个α-葡糖苷酶水解。这些结果表明,抑制ctMGAM反应可能会导致十二指肠和空肠近端葡萄糖释放的延迟,这既会减缓血糖峰值,又会向远端延伸消化。第三,从WCS酶促合成高度分支的结构,以证明在四个α-葡萄糖苷酶水平上的缓慢消化特性。研究表明,当分支的α-极限糊精比例高且分支程度高时,糖原生成的速度就会降低。第四,通过差异抑制α-葡萄糖苷酶的“触发”概念被用于检查对葡萄糖生成的精确控制,目的是将葡萄糖缓慢传递到体内而不是完全抑制。值得注意的是,这些抑制剂对α-葡萄糖苷酶的抑制作用不同。这些发现可潜在地通过控制与某些常见的慢性疾病(例如II型糖尿病和肥胖症)有关的α-葡萄糖苷酶的活性来扩展餐后葡萄糖反应。最终,这些研究为四种粘膜α-葡萄糖苷酶消化血糖碳水化合物的机理提供了重要的见识,并可用于进一步研究葡萄糖输送特性与生理相关反应(例如胃排空,激素)之间的关系。反应,食物摄入量,能量平衡)。

著录项

  • 作者

    Lee, Byung-Hoo.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Agriculture Food Science and Technology.;Health Sciences Nutrition.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号