首页> 外文学位 >Asymptotic behavior and traveling waves for some population models.
【24h】

Asymptotic behavior and traveling waves for some population models.

机译:某些人口模型的渐近行为和行波。

获取原文
获取原文并翻译 | 示例

摘要

Since the 1970s, more and more mathematicians have been trying to propose reasonable models for the growth of species in all kinds of environments and for the spread of epidemic diseases, and to understand the long-term behavior of their modelling systems. This thesis, consisting of five chapters, mainly deals with the dynamics of population and epidemic models represented by some time-delayed ordinary and partial differential equations, and reaction-diffusion systems.; In Chapter 1, we present some basic concepts and theorems, which involve the theories of monotone dynamics, uniform persistence, essential spectrum of linear operators, asymptotic speeds of spread and minimal traveling wave speed.; Based on some specific competitive models, we formulate in Chapter 2 a class of asymptotically periodic delay differential equations, which models multi-species competition, and investigate the global dynamics of the model. More precisely, we established the sufficient conditions for competitive coexistence, exclusion and uniform persistence via theories of competitive systems on Banach spaces, uniform persistence, periodic and asymptotically periodic semiflows.; Chapter 3 focuses on a nonlocal reaction-diffusion equation modelling the growth of a single species. For this model, we obtain a threshold dynamics and the global attractivity of a positive steady state. We also discuss the effects of spatial dispersal and maturation period on the evolutionary behavior in two specific cases. Our numerical investigation seems to suggest that the model admits a unique positive steady state even without monotonicity conditions.; In Chapter 4, we consider an epidemic model represented by a reaction-diffusion equation coupled with an ordinary differential equation, which is proposed by Capasso et al. Here, the existence, uniqueness (up to translation) and global exponential stability with phase shift of bistable traveling waves are studied by phase plane techniques, monotone semiflow approaches and a detailed spectrum analysis.; In Chapter 5, the asymptotic speeds of spread for solutions and traveling wave solutions to the integral version of the epidemic model in Chapter 4 are investigated. Our results show that the minimal wave speed for monotone traveling waves coincides with the asymptotic speed of spread for solutions with initial functions having compact supports. Some numerical simulations are also provided.
机译:自1970年代以来,越来越多的数学家试图为在各种环境中物种的生长以及流行病的传播提出合理的模型,并了解其建模系统的长期行为。本论文共分五章,主要讨论以时滞的常微分方程和偏微分方程以及反应扩散系统为代表的种群和传染病模型的动力学。在第一章中,我们介绍了一些基本概念和定理,其中涉及单调动力学,一致持久性,线性算子的基本谱,渐近传播速度和最小行波速度的理论。在某些特定的竞争模型的基础上,我们在第2章中建立了一类渐近周期时滞微分方程,该模型对多物种竞争进行建模,并研究了该模型的全局动力学。更确切地说,我们通过Banach空间上的竞争系统,一致持久性,周期和渐近周期半流的理论,为竞争共存,排斥和一致持久性建立了充分条件。第三章着重讨论了非局部反应扩散方程,该方程对单个物种的生长进行了建模。对于此模型,我们获得了阈值动力学和正稳态的全局吸引性。我们还讨论了在两个特定情况下空间分散和成熟期对进化行为的影响。我们的数值研究似乎表明,即使没有单调性条件,该模型也可以接受唯一的正稳态。在第4章中,我们考虑了由Capasso等人提出的由反应扩散方程与常微分方程耦合的流行模型。在此,通过相平面技术,单调半流方法和详细的频谱分析,研究了双稳态行波的存在,唯一性(直至平移)和具有相移的全局指数稳定性。在第5章中,研究了第4章中流行模型的积分形式的解和行波解的渐近速度。我们的结果表明,单调行波的最小波速与具有紧凑支撑的初始函数的解的渐近速度一致。还提供了一些数值模拟。

著录项

  • 作者

    Xu, Dashun.;

  • 作者单位

    Memorial University of Newfoundland (Canada).;

  • 授予单位 Memorial University of Newfoundland (Canada).;
  • 学科 Mathematics.; Biology Biostatistics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;生物数学方法;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号