首页> 外文学位 >DC and Microwave Analysis of Gallium Arsenide Field-Effect Transistor-Based Nucleic Acid Biosensors.
【24h】

DC and Microwave Analysis of Gallium Arsenide Field-Effect Transistor-Based Nucleic Acid Biosensors.

机译:砷化镓场效应晶体管型核酸生物传感器的直流和微波分析。

获取原文
获取原文并翻译 | 示例

摘要

Sensitive high-frequency microwave devices hold great promise for biosensor design. These devices include GaAs field effect transistors (FETs), which can serve as transducers for biochemical reactions, providing a platform for label-free biosensing. In this study, a two-dimensional numerical model of a GaAs FET-based nucleic acid biosensor is proposed and simulated. The electronic band structure, space charge density, and current-voltage relationships of the biosensor device are calculated. The intrinsic small signal parameters for the device are derived from simulated DC characteristics and used to predict AC behavior at high frequencies.;The biosensor model is based on GaAs field-effect device physics, semiconductor transport equations, and a DNA charge model. Immobilization of DNA molecules onto the GaAs sensor surface results in an increase in charge density at the gate region, resulting from negatively-charged DNA molecules. In modeling this charge effect on device electrical characteristics, we take into account the pre-existing surface charge, the orientation of DNA molecules on the sensor surface, and the distance of the negative molecular charges from the sensor surface. Hybridization with complementary molecules results in a further increase in charge density, which further impacts the electrical behavior of the device. This behavior is studied through simulation of the device current transport equations. In the simulations, numerical methods are used to calculate the band structure and self-consistent solutions for the coupled Schrödinger, Poisson, and current equations. The results suggest that immobilization and hybridization of DNA biomolecules at the biosensor device can lead to measurable changes in electronic band structure and current-voltage relationships.;The high-frequency response of the biosensor device shows that GaAs FET devices can be fabricated as sensitive detectors of oligonucleotide binding, facilitating the development of inexpensive semiconductor-based molecular diagnostics suitable for rapid diagnosis of various disease states.
机译:灵敏的高频微波设备在生物传感器设计方面具有广阔的前景。这些设备包括GaAs场效应晶体管(FET),可以用作生化反应的换能器,为无标签的生物传感提供平台。在这项研究中,提出并模拟了基于GaAs FET的核酸生物传感器的二维数值模型。计算生物传感器装置的电子带结构,空间电荷密度和电流-电压关系。该器件的固有小信号参数来自模拟的直流特性,并用于预测高频下的交流行为。生物传感器模型基于GaAs场效应器件的物理特性,半导体传输方程和DNA电荷模型。将DNA分子固定在GaAs传感器表面上会导致栅极区域的电荷密度增加,这是由于DNA分子带负电荷而引起的。在对设备电气特性的电荷影响进行建模时,我们考虑了预先存在的表面电荷,DNA分子在传感器表面上的取向以及负分子电荷与传感器表面的距离。与互补分子的杂交导致电荷密度的进一步增加,这进一步影响了器件的电性能。通过模拟器件电流传输方程来研究这种行为。在仿真中,数值方法用于计算耦合的薛定ding方程,泊松方程和电流方程的能带结构和自洽解。结果表明,DNA生物分子在生物传感器装置上的固定和杂交可导致电子能带结构和电流-电压关系的可测量变化。;生物传感器装置的高频响应表明,GaAs FET装置可作为灵敏检测器制造。寡核苷酸结合的研究,有利于开发适用于快速诊断各种疾病状态的廉价的基于半导体的分子诊断方法。

著录项

  • 作者

    Kimani, John K.;

  • 作者单位

    The University of Wisconsin - Milwaukee.;

  • 授予单位 The University of Wisconsin - Milwaukee.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号