首页> 外文学位 >Laser Channeling and Hosing in Millimeter-Scale Underdense Plasmas in Fast Ignition.
【24h】

Laser Channeling and Hosing in Millimeter-Scale Underdense Plasmas in Fast Ignition.

机译:快速点火的毫米波密集等离子体中的激光通道和外壳。

获取原文
获取原文并翻译 | 示例

摘要

This thesis studies laser channeling under parameters relevant to fast ignition with two-dimensional (2D) and three-dimensional (3D) particle-in-cell (PIC) simulations. Laser channeling is found to be a highly nonlinear and dynamic process. Channeling in 2D and 3D simulations displays qualitatively similar physical features, including laser self-focusing/filamentation, laser hosing, and channel bending/bifurcation/self-correction. Residual electrons in the channel are heated to relativistic temperatures, which reduce the electron quiver momentum and cause the decoupling of the plasma and the laser. The eventual formation of a straight, low density channel allows the trailing ignition pulse to transmit with a > 80% transmittance. There are quantitative differences between 2D and 3D channeling simulations. Channel advancing is faster in 3D due to easier channel formation and a larger ponderomotive force from laser self-focusing. The intensity scalings of the channeling time and energy show that channeling in fast ignition is essentially a ponderomotive process and low intensity channeling pulses are preferred to reduce the required laser energy.;This thesis also studies dependences of the hosing instability on plasma temperatures and dispersion. Coupled laser envelope and plasma density perturbation equations for short and long pulses are derived from the relativistic fluid theory. Hosing equations are then derived from these coupled equations using a variational method. A parameter α, which is the sum of the normalized relativistic plasma pressure and internal energy, is introduced to represent the plasma thermal effects. In a relativistically hot plasma, α is much larger than 1, and suppression of the laser ponderomotive force and laser hosing is found. Analysis of the hosing equations finds that the fastest growing mode shifts to longer wavelengths as α increases. This solves a long-standing puzzle that the hosing modes observed in both experiments and simulations have much longer wavelengths than predicted by the hosing theory for a cold plasma. Dispersion is found to be unimportant for long-pulse hosing. For short-pulse hosing, dispersion is found to stabilize hosing at wavelengths longer than a critical value. PIC simulations on both long-pulse and short-pulse hosing have largely verified these analyses.
机译:本文通过二维(2D)和三维(3D)单元内粒子(PIC)仿真研究了与快速点火相关的参数下的激光通道。发现激光通道化是高度非线性和动态的过程。 2D和3D模拟中的通道显示出在质量上相似的物理特征,包括激光自聚焦/细丝化,激光束和通道弯曲/分叉/自校正。通道中的残留电子被加热到相对论温度,这降低了电子颤动动量,并导致了等离子体和激光的解耦。最终形成的直的低密度通道允许尾随的点火脉冲以> 80%的透射率透射。 2D和3D通道模拟之间存在定量差异。由于3D通道更容易形成,并且激光自聚焦产生的动能更大,因此3D通道的前进速度更快。通道时间和能量的强度标度表明,快速点火中的通道本质上是质动力过程,而低强度通道脉冲更可降低所需的激光能量。;本文还研究了胶管不稳定性对等离子体温度和色散的依赖性。从相对论流体理论推导了短脉冲和长脉冲的耦合激光包络和等离子体密度摄动方程。然后,使用变分方法从这些耦合方程式中导出宿主方程式。引入参数α,它是归一化的相对论等离子体压力和内部能量之和,以表示等离子体的热效应。在相对论热的等离子体中,α远大于1,并且发现抑制了激光质动力和激光束缚。对套管方程的分析发现,随着α的增加,增长最快的模式转移到更长的波长。这解决了一个长期存在的难题,即在实验和模拟中观察到的振荡模式具有比对于冷等离子体的振荡理论所预测的更长的波长。发现分散对于长脉冲软管不重要。对于短脉冲珩磨,发现色散可以在波长大于临界值的波长​​下稳定软管。关于长脉冲和短脉冲软管的PIC仿真已在很大程度上验证了这些分析。

著录项

  • 作者

    Li, Gang.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号