首页> 外文学位 >Relativistic Laser Self-Channeling in Underdense Plasmas: A Simulation of Key Experimental Parameters.
【24h】

Relativistic Laser Self-Channeling in Underdense Plasmas: A Simulation of Key Experimental Parameters.

机译:相对论激光在弱密度等离子体中的自沟道效应:关键实验参数的模拟。

获取原文
获取原文并翻译 | 示例

摘要

Relativistic and ponderomotive self-channeling of intense ultrashort laser pulses in underdense plasmas has been studied under more realistic experimental conditions in this thesis in order to optimize the controlled power compression and stability of the channel -- elements that are critical to the applications associated with these channels, including the generation of coherent x-rays. In experiments for coherent x-ray generation, the electron plasma column is created by the front temporal region of the laser pulse through ionization. A number of inter-connected experimental parameters will determine the quality of the transition from the incident laser spatial profile to that of a channel eigenmode. Proper control of these parameters enables the incident transverse laser radiation profile be matched adiabatically with minimal coupling losses to the spatial character of the desired fundamental channel eigenmode which provides a stable and robust zone for power compression. In order to study the effect of these experimental parameters on the formation and stability of laser self-channeling in underdense plasmas, the relativistic model under simplified conditions is modified with the inclusion of gas jet density and ionization conditions, laser mode structure and focusing conditions, and laser wavelength. The model results are in good general agreement with the experimental observations for the self-channeling of TW-level 248 nm laser pulses in Xenon and Krypton gas jets employed for the generation of coherent amplified keV x-ray pulses and capture the salient features of the relativistic self-channeling dynamics. The results outline the laser-target conditions that must be met to initiate the efficient self-channeling of laser. As the generation of a straight channel is required for x-ray amplification, the results in this thesis underline the importance of a high laser beam quality. The simulations also show that the combination of laser wavelength and target gas species is important, and the combination of 248nm laser radiation and a Xe gas target is one of the best choices for relativistic self-channeling. The relativistic laser self-channeling simulations presented in this thesis have examined the root causes of experimental observations more accurately than before and have computed results over a wider range of conditions than have been performed in experiments.
机译:为了优化通道的受控功率压缩和稳定性,本论文在更现实的实验条件下研究了低密度等离子体中强超短激光脉冲的相对论和质动力自通道,以优化通道的受控功率压缩和稳定性,这是与这些应用相关的关键因素通道,包括相干X射线的产生。在产生相干X射线的实验中,电子等离子体柱是由激光脉冲通过电离的前临时区域产生的。许多相互关联的实验参数将确定从入射激光空间轮廓到通道本征模的过渡质量。对这些参数的适当控制使得能够以最小的耦合损耗绝热地匹配入射的横向激光辐射轮廓,从而与所需的基本通道本征模的空间特征相匹配,从而为功率压缩提供了一个稳定而坚固的区域。为了研究这些实验参数对低密度等离子体中激光自沟道形成和稳定性的影响,对简化条件下的相对论模型进行了修改,包括气体喷射密度和电离条件,激光模式结构和聚焦条件,和激光波长。模型结果与氙气和K气喷嘴中TW级248 nm激光脉冲的自通道化(用于产生相干的keV x射线脉冲并捕获其显着特征的实验观察)基本吻合。相对论的自我引导动力学。结果概述了启动有效的激光自通道化必须满足的激光目标条件。由于X射线放大需要产生直通道,因此本论文的结果强调了高激光束质量的重要性。仿真还表明,激光波长和目标气体种类的组合很重要,而248nm激光辐射和Xe气体目标的组合是相对论自沟道的最佳选择之一。本文提出的相对论激光自窜动仿真比以前更准确地检查了实验观察的根本原因,并在比实验更广泛的条件下计算了结果。

著录项

  • 作者

    Zhao, Ji.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 260 p.
  • 总页数 260
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

  • 入库时间 2022-08-17 11:52:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号