首页> 外文学位 >Substrate stiffness regulates capillary network assembly.
【24h】

Substrate stiffness regulates capillary network assembly.

机译:基板刚度调节毛细管网络的组装。

获取原文
获取原文并翻译 | 示例

摘要

Tissue assembly is a fundamental biological process that arises from complex cell-cell and cell-extracellular matrix interactions. Angiogenesis is the process of capillary formation that enables normal physiological responses like wound healing and mediates disease states like tumorigenesis. During angiogenesis, capillary endothelial cells degrade the basement membrane, proliferate, migrate, and assemble a new vascular network. While there is much focus on growth factor signaling cascades that enable angiogenesis, less attention has been paid to the role of mechanics in capillary formation. Notably, capillary network assembly has been demonstrated on compliant, but not stiff, substrates suggesting that the mechanical microenvironment also mediates angiogenesis. However, it is unknown whether, or how, substrate stiffness regulates capillary network assembly.;Herein, we demonstrate that substrate stiffness regulates capillary network assembly and mediates endothelial cell behaviors that enable assembly. Compliant (E1 kPa), substrates promote the self-assembly of endothelial cell networks that result from a balance of cell-cell and cell-matrix adhesion. Substrate stiffness alters the localization of VE-cadherin and focal adhesions, mediators of endothelial cell-cell and cell-matrix adhesion, respectively. Endothelial network assembly also requires polymerization of the matrix protein fibronectin that stabilizes cell-cell interactions. Analogously, we demonstrate that mammary cell network assembly is also sensitive to substrate stiffness and requires the deposition of laminin. Our findings indicate that compliant substrates foster network assembly by promoting cell-cell adhesion, cell-matrix interactions, and reducing cell-matrix adhesion.;We further investigate the role of substrate stiffness in mediating changes in cell shape and contractility. We determine that substrate stiffness and ligand density alter cell area, and that both stiffness and cell area are significant predictors of traction force generation in endothelial cells during cell-cell contact. In addition, we demonstrate that substrate stiffness alters the synthesis and deposition of fibronectin and extra domain B-fibronectin, an isoform preferentially localized to neovasculature, by modulating cell shape and the directionality of traction forces in endothelial cells.;Taken together, these data demonstrate that substrate stiffness regulates capillary network assembly by altering endothelial cell behaviors that facilitate assembly. These findings contribute to the understanding of how the mechanical microenvironment regulates capillary network assembly and enable approaches to control angiogenesis for therapeutic use.
机译:组织组装是从复杂的细胞-细胞和细胞-细胞外基质相互作用产生的基本生物学过程。血管生成是毛细血管形成的过程,能够实现正常的生理反应(如伤口愈合)并介导疾病状态(如肿瘤发生)。在血管生成过程中,毛细血管内皮细胞降解基底膜,增殖,迁移并组装新的血管网络。尽管人们非常关注促成血管生成的生长因子信号转导级联,但对机制在毛细管形成中的作用的关注却很少。值得注意的是,毛细管网络组件已在顺应性但非刚性的基质上得到证明,表明机械微环境也可介导血管生成。然而,尚不清楚基质刚度是否或如何调节毛细血管网络的组装。在此,我们证明了基质刚度调节毛细网络的组装并介导了能够进行组装的内皮细胞行为。符合标准(E1 kPa)的底物可促进内皮细胞网络的自组装,而内皮细胞网络的自组装是由于细胞与细胞和基质之间的粘附力平衡所致。基质刚度分别改变VE-钙粘蛋白的定位和粘着斑,分别是内皮细胞与细胞和基质的粘附介质。内皮网络装配也需要基质蛋白纤连蛋白的聚合,以稳定细胞间的相互作用。类似地,我们证明了乳腺细胞网络组装也对基质刚度敏感并且需要层粘连蛋白的沉积。我们的发现表明顺应性底物通过促进细胞-细胞粘附,细胞-基质相互作用以及减少细胞-基质粘附来促进网络组装。;我们进一步研究了基质刚度在介导细胞形状和收缩力变化中的作用。我们确定基质刚度和配体密度会改变细胞面积,并且刚度和细胞面积都是内皮细胞在细胞与细胞接触过程中产生牵引力的重要预测指标。此外,我们证明了基质刚度通过调节内皮细胞中细胞的形状和牵引力的方向性来改变纤连蛋白和额外域B-纤连蛋白(一种优先定位于新脉管系统的同种型)的合成和沉积。合在一起,这些数据表明底物刚度通过改变有助于组装的内皮细胞行为来调节毛细管网络的组装。这些发现有助于理解机械微环境如何调节毛细血管网的组装,并使控制血管生成的方法可用于治疗用途。

著录项

  • 作者

    Califano, Joseph Peter.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Biomedical engineering.;Cellular biology.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 234 p.
  • 总页数 234
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号