首页> 外文学位 >Microstructural Modeling of Failure Modes in Martensitic Steels.
【24h】

Microstructural Modeling of Failure Modes in Martensitic Steels.

机译:马氏体钢破坏模式的微观结构建模。

获取原文
获取原文并翻译 | 示例

摘要

A dislocation-density based multiple-slip crystal plasticity formulation that is based on accounting for microstructural heterogeneities, dislocation-density interactions, and dislocation-density grain boundary (GB) interactions, such as dislocation-density transmission and blockage, has been developed to investigate microstructural quasi-static and dynamic failure modes in martensitic steel alloys. The balance between the generation and annihilation of dislocations, through glissile and forest interactions at the slip system level is taken as the basis for the evolution of mobile and immobile dislocation densities, and the evolution equations are then coupled to a framework that relates it to a general class of crystallographies and deformation modes. The formulation accounts for variant morphologies and orientation relationships (ORs) that are uniquely inherent to lath martensitic microstructures. Dislocation-density GB interactions, which are based on dislocation-density accumulation and transmission at variant boundaries, is used to predict stress accumulation or relaxations. A microstructural failure criterion based on resolving these stresses onto martensitic variant cleavage planes, and specialized finite-element (FE) methodologies using overlapping elements to represent evolving fracture surfaces is used for a detailed analysis of fracture nucleation and intergranular and transgranular crack growth in martensitic steels.;The interrelated effects of microstructural characteristics, such as variant morphology, variant distribution, ORs, and relative block and packet sizes, on the dominant dislocation-density mechanisms for the localization of plastic strains, void interactions, and the initiation and propagation of intergranular and transgranular fracture modes in martensitic microstructures that are representative of SEM/EBSD mapped images of martensitic steels, subjected to a broad spectrum of loading conditions ranging from quasi-static to high strain-rates, is analyzed.;The results indicate that the local dislocation-density behavior at the variant boundaries and the interiors are the dominant microstructural factors that influence the failure initiation and growth, which are consistent with experimental observations. The relative effects of the block and packet boundaries is investigated, and the orientation of the cleavage planes in relation to the slip planes and the lath morphology can be used to determine the dominant intergranular and transgranular failure modes. Block sizes along the lath long and lateral directions are identified as the key microstructural characteristics for toughening mechanisms, such as crack arrest and deflection. This indicates that optimal distributions and sizes of blocks and packets in martensitic steels can be determined for desired ductility, delayed crack nucleation and greater fracture toughness. This framework can then be used to obtain validated design guidelines for a new generation of high strength and high toughness steels.
机译:已经开发了一种基于位错密度的多滑晶体可塑性公式,该公式基于微观结构异质性,位错密度相互作用和位错密度晶界(GB)相互作用(例如位错密度传递和阻塞)来研究马氏体钢合金的微观结构准静态和动态破坏模式。通过滑移系统水平上的滑顺性和森林相互作用,位错的产生和an灭之间的平衡被视为可移动和不可移动位错密度的演化的基础,然后将演化方程式耦合到一个框架,将其与晶体学和变形模式的一般类别。该配方考虑了板条马氏体微结构固有的变体形态和取向关系(OR)。基于位错密度累积和在变体边界处传输的位错密度GB相互作用用于预测应力的累积或松弛。基于将这些应力解析到马氏体变体劈裂面上的微观结构破坏准则,以及使用重叠元素表示演化的断裂表面的专门有限元(FE)方法,用于详细分析马氏体钢的断裂成核以及晶间和晶间裂纹扩展。;微观结构特征的相互影响,例如变体形态,变体分布,OR,以及相对的块和小包大小,对主要的位错-密度机制进行塑性应变的定位,空隙相互作用以及晶间的引发和传播分析了马氏体钢的SEM / EBSD映射图像所代表的马氏体显微组织和晶间断裂模式,分析了从准静态到高应变率的各种载荷条件。 -bo处的-密度行为单相和内部是影响失效发生和发展的主要微观结构因素,与实验观察结果一致。研究了块状和包状边界的相对影响,并且相对于滑动面和板条形态的解理面方向可以用来确定主要的晶间和跨晶破坏模式。沿板条的长边和横向方向的块尺寸被确定为增韧机制(如裂纹止裂和变形)的关键微观结构特征。这表明,可以针对所需的延展性,延迟的裂纹成核和更大的断裂韧性,确定马氏体钢中块和小包的最佳分布和尺寸。然后,可以使用该框架来获得用于新一代高强度和高韧性钢的经过验证的设计准则。

著录项

  • 作者

    Shanthraj, Pratheek.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Mechanical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号