首页> 外文学位 >Acousto-optic multiphoton laser scanning microscopy and multiphoton photon counting spectroscopy: Applications and implications for optical neurobiology.
【24h】

Acousto-optic multiphoton laser scanning microscopy and multiphoton photon counting spectroscopy: Applications and implications for optical neurobiology.

机译:声光多光子激光扫描显微镜和多光子光子计数光谱:光学神经生物学的应用和意义。

获取原文
获取原文并翻译 | 示例

摘要

Multiphoton excitation of molecular probes has become an important tool in experimental neurobiology owing to the intrinsic optical sectioning and low light scattering it affords. Using molecular functional indicators, multiphoton excitation allows physiological signals within single neurons to be observed from within living brain tissue. Ideally, it would be possible to record from multiple sites located throughout the elaborately branching dendritic arbors, in order to study the correlations of structure and function both within and across experiments. However, existing multiphoton microscope systems based on scanning mirrors do not allow optical recordings to be obtained from more than a handful of sites simultaneously at the high rates required to capture the fast physiological signals of interest (>100Hz for Ca2+ signals, >1kHz for membrane potential transients). In order to overcome this limitation, two-dimensional acousto-optic deflection was employed, to allow an ultrafast laser beam suited for multiphoton excitation to be rapidly repositioned with low latency (∼15μs). This supports a random-access scanning mode in which the beam can repeatedly visit a succession of user-selected sites of interest within the microscope's field-of-view at high rates, with minimal sacrifice of pixel dwell time. This technique of acousto-optic multiphoton laser scanning microscope (AO-MPLSM) was demonstrated to allow the spatial profile of signals arising in response to physiological stimulation to be rapidly mapped. Means to compensate or avoid problems of dispersion which have hampered AO-MPLSM in the past are presented, with the latter being implemented. Separately, the combination of photon counting detection with multiphoton excitation, termed generally multiphoton photon counting spectroscopy (MP-PCS), was also considered, with particular emphasis on the technique of fluorescence correlation spectroscopy (FCS). MP-PCS was shown to allow information about molecular numbers and mobility, as well as the focal volume itself, to be obtained. This capability may in the future be employed to study the number and transport of native neuronal signaling molecules. MP-PCS was also found to be a promising off-line tool which can allow the performance of AO-MPLSM to be optimized, with respect to both the instrument and the indicators employed.
机译:分子探针的多光子激发由于其固有的光学切片和低光散射而已成为实验神经生物学的重要工具。使用分子功能指示剂,多光子激发可以从活的脑组织内观察到单个神经元内的生理信号。理想情况下,有可能从遍布精心分支的树突状乔木的多个位置进行记录,以便研究实验内和实验间的结构和功能的相关性。但是,现有的基于扫描镜的多光子显微镜系统无法以捕获快速感兴趣的生理信号(Ca2 +信号> 100Hz,膜> 1kHz)所需的高速率同时从多个位置获取光学记录潜在的瞬变)。为了克服这一限制,采用了二维声光偏转技术,可以以低延迟(〜15μs)快速地重新放置适合多光子激发的超快激光束。这支持随机访问扫描模式,在该模式下,光束可以高速率重复访问显微镜视场内一系列用户选择的感兴趣位置,而像素停留时间的损失却最小。声光多光子激光扫描显微镜(AO-MPLSM)的这项技术被证明可以快速映射响应生理刺激而产生的信号的空间分布。提出了补偿或避免过去妨碍AO-MPLSM的分散问题的手段,并实施后者。单独地,也考虑了光子计数检测与多光子激发的组合,通常称为多光子光子计数光谱法(MP-PCS),特别强调了荧光相关光谱法(FCS)的技术。显示MP-PCS可以获取有关分子数和迁移率以及焦点体积本身的信息。将来可以使用此功能来研究天然神经元信号分子的数量和运输。还发现MP-PCS是一种很有前途的离线工具,可以相对于所用的仪器和指标,使AO-MPLSM的性能达到最佳。

著录项

  • 作者

    Iyer, Vijay.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Biology Neuroscience.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 320 p.
  • 总页数 320
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号