首页> 外文学位 >Beyond memory cells for leakage and temperature control in SRAM-based units, the peripheral circuits story.
【24h】

Beyond memory cells for leakage and temperature control in SRAM-based units, the peripheral circuits story.

机译:除了用于基于SRAM的单元中的泄漏和温度控制的存储单元以外,外围电路还具有重要意义。

获取原文
获取原文并翻译 | 示例

摘要

CMOS technology scaling has been a primary driving force to increase the processor performance. A drawback of this trend lies in a continuing increase in leakage power dissipation, which now accounts for an increasingly large share of processor power dissipation. On-chip SRAM memories such as caches, branch predictor, and TLBs account for a large fraction of total processor power consumption and much of it is leakage power because of their large size. High leakage power dissipation not only increases the overall processor power dissipation but also increases its temperature. The positive feedback loop between temperature and leakage power causes a further increase in both of them. Furthermore, some of the SRAM-based structures are temperature hot-spots on a chip, e.g. register files, BTB, and ITLB. Finally, higher temperature reduces chip reliability and usable lifetime and increases the complexity of packaging and cooling design.A number of process and circuit techniques have been proposed to significantly reduce the leakage of the memory cell array in SRAMs. Recent results have shown that leakage in SRAM peripheral circuits, such as word-line, input and output drivers, etc. are now the main sources of leakage. In response to the improving share of leakage in peripheral circuits, this thesis explores an integrated circuit and architectural approach to reduce leakage in on-chip SRAM memories peripheral circuitry.At the circuit level, one approach to reduce the sub-threshold leakage in SRAM peripheral circuits is to use stacked sleep transistors. The drawback of using sleep transistors is the time delay that they add to SRAM access time, which may lead to increased execution time and therefore potentially higher energy consumption. To reduce SRAM "wakeup" delay this work proposes sharing sleep transistors and using them in a zig-zag, or alternating, fashion across stages of multi-stage drivers, such as the SRAM word-line driver. We show that by adapting the bias voltage of the sleep transistor in zigzag share circuit one can trade leakage reduction and wakeup delay in the zig-zag share scheme. We thus propose to use several low-leakage power modes with different wakeup times to better control the SRAM peripheral circuit leakage. We further explore the design space of sleep transistor insertion in SRAM peripheral circuitry and showed the effect of sleep transistor size, its gate bias and the number of horizontal and vertical level sharing on the trade off between the leakage power savings and the impact on instability, area, dynamic power, propagation delay, wakeup delay, rise time and fall time of the peripheral circuit of SRAM.Now, the question is when and how to use these different low-leakage modes for each of the SRAM units to maximize the leakage reduction while minimizing the wakeup delay and its impact on performance. We answer to these questions at architecture level, by proposing several micro-architectural techniques to control multiple sleep modes.We explored an integrated circuit and architectural approach to minimize leakage power dissipation and consequently also reduce the temperature of on-chip SRAMs in the L2, DL1 and IL1 caches, Branch Predictor, Floating Point and Integer Register Files, Floating Point and Integer Rename units, and Instruction and Data TLBs in both high performance and embedded processors.We evaluated the leakage reduction in individual units and showed a large leakage power reduction. Resulting temperature reduction, including the effect of positive feedback between temperature and leakage power, is also evaluated. A significant temperature reduction is achieved in each unit.
机译:CMOS技术的扩展一直是提高处理器性能的主要动力。这种趋势的缺点在于泄漏功耗的持续增加,现在占处理器功耗的份额越来越大。诸如高速缓存,分支预测器和TLB之类的片上SRAM存储器在处理器总功耗中所占比例很大,并且由于其体积较大,其中很大一部分是泄漏功率。高泄漏功耗不仅会增加处理器的整体功耗,还会提高其温度。温度和泄漏功率之间的正反馈环路会导致两者的进一步增加。此外,某些基于SRAM的结构是芯片上的温度热点,例如,注册文件,BTB和ITLB。最后,较高的温度降低了芯片的可靠性和使用寿命,并增加了封装和冷却设计的复杂性。已经提出了许多工艺和电路技术来显着减少SRAM中存储单元阵列的泄漏。最近的结果表明,SRAM外围电路(如字线,输入和输出驱动器等)中的泄漏现在是泄漏的主要来源。针对外围电路中漏电流比例的不断提高,本文探索了一种集成电路和体系结构的方法来减少片上SRAM存储器外围电路中的漏电流。在电路层面,一种减少SRAM外围阈值漏电流的方法电路是使用堆叠式睡眠晶体管。使用睡眠晶体管的缺点是它们增加了SRAM访问时间的时间延迟,这可能导致执行时间增加,从而可能导致更高的能耗。为了减少SRAM的“唤醒”延迟,这项工作提出了在多级驱动器(如SRAM字线驱动器)的各级之间共享Z型或交替使用睡眠晶体管的方法。我们表明,通过在Z型共享电路中调整睡眠晶体管的偏置电压,可以在Z型共享方案中权衡泄漏减少和唤醒延迟。因此,我们建议使用几种具有不同唤醒时间的低泄漏功率模式,以更好地控制SRAM外围电路的泄漏。我们进一步探索了将睡眠晶体管插入SRAM外围电路中的设计空间,并展示了睡眠晶体管尺寸,其栅极偏置以及水平和垂直电平共享数对泄漏功率节省与不稳定性影响之间的权衡的影响, SRAM外围电路的面积,动态功率,传播延迟,唤醒延迟,上升时间和下降时间现在,问题是何时以及如何为每个SRAM单元使用这些不同的低泄漏模式以最大程度地减少泄漏同时最小化唤醒延迟及其对性能的影响。我们通过提出几种微体系结构技术来控制多个睡眠模式来在体系结构级别上回答这些问题。我们探索了一种集成电路和体系结构方法来最大程度地降低泄漏功耗,从而降低L2中片上SRAM的温度,高性能和嵌入式处理器中的DL1和IL1高速缓存,分支预测器,浮点和整数寄存器文件,浮点和整数重命名单元以及指令和数据TLB,我们评估了单个单元的泄漏减少量,并显示出大幅降低的泄漏功率。还评估了导致的温度降低,包括温度和泄漏功率之间的正反馈效应。每个单元均实现了显着的温度降低。

著录项

  • 作者

    Homayoun, Houman.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Computer.Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号