首页> 外文学位 >Understanding Fermentative Glycerol Metabolism and its Application for the Production of Fuels and Chemicals.
【24h】

Understanding Fermentative Glycerol Metabolism and its Application for the Production of Fuels and Chemicals.

机译:了解甘油的发酵代谢及其在燃料和化学产品生产中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Due to its availability, low-price, and higher degree of reduction than lignocellulosic sugars, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. However, this high degree of reduction of carbon atoms in glycerol also results in significant challenges in regard to its utilization under fermentative conditions. Therefore, in order to unlock the full potential of microorganisms for the fermentative conversion of glycerol into fuels and chemicals, a detailed understanding of the anaerobic fermentation of glycerol is required. The work presented here highlights a comprehensive experimental investigation into fermentative glycerol metabolism in Escherichia coli, which has elucidated several key pathways and mechanisms. The activity of both the fermentative and respiratory glycerol dissimilation pathways was found to be important for maximum glycerol utilization, a consequence of the metabolic cycle and downstream effects created by the essential involvement of PEP-dependent dihydroxyacetone kinase (DHAK) in the fermentative glycerol dissimilation pathway. The decoupling of this cycle is of central importance during fermentative glycerol metabolism, and while multiple decoupling mechanisms were identified, their relative inefficiencies dictated not only their level of involvement, but also implicated the activity of other pathways/enzymes, including fumarate reductase and pyruvate kinase. The central role of the PEP-dependent DHAK, an enzyme whose transcription was found to be regulated by the cyclic adenosine monophosphate (cAMP) receptor protein (CRP)-cAMP complex, was also tied to the importance of multiple fructose 1,6-bisphosphotases (FBPases) encoded by fbp, glpX , and yggF. The activity of these FBPases, and as a result the levels of fructose 1,6-bisphosphate, a key regulatory compound, appear to also play a role in the involvement of several other enzymes during fermentative glycerol metabolism including PEP carboxykinase. Using this improved understanding of fermentative glycerol metabolism as a platform, E. coli has been engineered to produce high yields and titers of ethanol (19.8 g/L, 0.46 g/g), co-produced along with hydrogen, and 1,2-propanediol (5.6 g/L, 0.21 g/g) from glycerol, demonstrating its potential as a carbon source for the production of fuels and reduced chemicals.
机译:由于其可用性,低价格和比木质纤维素糖更高的还原度,甘油已成为一种有吸引力的碳源,用于生产燃料和还原的化学物质。然而,甘油中碳原子的这种高度还原也导致了在发酵条件下利用甘油方面的重大挑战。因此,为了释放微生物将甘油发酵转化为燃料和化学品的全部潜能,需要对甘油的厌氧发酵有详细的了解。此处介绍的工作重点介绍了对大肠杆菌中发酵甘油代谢的全面实验研究,该研究阐明了一些关键途径和机制。发现发酵和呼吸甘油异化途径的活性对于甘油的最大利用是重要的,这是PEP依赖性二羟基丙酮激酶(DHAK)在发酵甘油异化途径中的重要参与所产生的代谢循环和下游作用的结果。 。在发酵甘油代谢过程中,该循环的解耦至关重要,尽管确定了多种解耦机制,但它们的相对低效率不仅决定了它们的参与水平,而且还暗示了其他途径/酶的活性,包括富马酸酯还原酶和丙酮酸激酶。 。 PEP依赖的DHAK(其转录受环磷酸单腺苷(cAMP)受体蛋白(CRP)-cAMP复合物调控)的核心作用也与多种果糖1,6-双磷酸酶的重要性有关(FBPases)由fbp,glpX和yggF编码。这些FBPase的活性以及果糖1,6-双磷酸果糖(一种关键的调节化合物)的水平似乎也参与了发酵甘油代谢中其他几种酶的参与,包括PEP羧激酶。利用对发酵甘油代谢的这种更好的理解作为平台,对大肠杆菌进行了工程改造,以生产高产率和高滴度的乙醇(19.8 g / L,0.46 g / g),与氢共同生成,以及1,2-甘油中的丙二醇(5.6 g / L,0.21 g / g),证明了其作为生产燃料和减少化学品的碳源的潜力。

著录项

  • 作者

    Clomburg, James M.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号