首页> 外文学位 >Role of macro and nanoscale interactions in bacterial attachment to heterogeneous surfaces.
【24h】

Role of macro and nanoscale interactions in bacterial attachment to heterogeneous surfaces.

机译:宏观和纳米级相互作用在细菌附着于异质表面的作用。

获取原文
获取原文并翻译 | 示例

摘要

Bacterial transport and attachment to surfaces is of considerable importance to engineered and natural systems. Once bacteria associate with a surface, they develop into complex communities of cells encased in exopolymeric substances (EPS) forming a biofilm. Bacterial surface association and subsequent biofilm formation is governed by the initial attachment step. Initial attachment of pathogenic bacteria to environmentally and medically relevant substrata is governed by cell and substratum surface features, including nanoscale roughness, charge and surface chemistry, and the chemistry of the intervening fluid. This work sought to elucidate nanoscale contributions to macro-scale adhesive behavior from the standpoint of the bacterial cell surface and the substratum. Materials of varied surface chemistry and charge were tested as substrata for adhesive capacity towards Escherichia coli in macro-scale continuous-flow columns. Atomic force microscopy (AFM) was used to determine nano-scale interaction energies. Observed adhesive behavior between the test E. coli strains on the tested mineral surfaces, was consistent with surface analyses, conducted at both the macro- and nanoscale. The impact of substratum surface features such as height and roughness on adhesive interactions was examined in a well-defined AFM experiment. Intrinsic substrata surface properties (topography and chemistry) were modified by imaging conditions (probe type and imaging fluid) and contribute to AFM-inferred surface descriptors. Finally, to investigate specific bacterial cell, proteinaceous appendages in enhancing bacterial attachment to glass was investigated. P. aeruginosa PAO1 cell surface chemistry and cell attachment ability on glass substrata was examined utilizing mutants for various chromosomal encoded surface appendages, flagella, (fliM-), type IV pili (pilA -), both type IV pili and flagella (pilA- and fliM-). Attachment ability determined in macro-scale glass bead columns and batch adhesion studies to glass were larger for appendage laden WT cells compared to mutant strains. Long-range attractive adhesive forces, measured by AFM for individual cells and glass colloids (1 mum diameter), were larger for cells deficient in type IV pili. This research examined the role of nanoscopic surface features, including hydrophobicity, surface charge and roughness, in initial attachment of bacteria to substrata at the macro and nanoscale.
机译:细菌的运输和附着在表面上对工程化和天然系统非常重要。一旦细菌与表面结合,它们就会发展成复杂的细胞群落,这些细胞被包裹在表观聚合物(EPS)中,形成生物膜。细菌表面缔合和随后的生物膜形成受初始附着步骤支配。病原菌与环境和医学上相关的基质的初始附着受细胞和基质表面特征的控制,这些特征包括纳米级粗糙度,电荷和表面化学性质以及介入流体的化学性质。这项工作试图从细菌细胞表面和基质的角度阐明纳米尺度对宏观粘附行为的贡献。在大型连续流色谱柱中,测试了表面化学和电荷不同的材料作为对大肠杆菌的粘附能力的基质。原子力显微镜(AFM)用于确定纳米级的相互作用能。在测试的矿物表面上观察到的测试大肠杆菌菌株之间的粘附行为与在宏观和纳米尺度上进行的表面分析一致。在明确定义的AFM实验中检查了基底表面特征(例如高度和粗糙度)对粘合剂相互作用的影响。通过成像条件(探针类型和成像液)修改了固有的地下表面性质(形貌和化学性质),并有助于AFM推断的表面描述符。最后,为了研究特定的细菌细胞,研究了蛋白质附件在增强细菌与玻璃的附着中的作用。铜绿假单胞菌PAO1细胞表面化学和在玻璃基质上的细胞附着能力使用各种染色体编码的表面附件,鞭毛(fliM-),IV型菌毛(pilA-),IV型菌毛和鞭毛(pilA-和fliM-)。与突变菌株相比,对于附载WT细胞,在大型玻璃珠色谱柱中确定的附着能力和对玻璃的批量粘附性研究更大。通过AFM测量的单个细胞和玻璃胶体(直径为1毫米)的远距离吸引力粘附力对于缺乏IV型菌毛的细胞更大。这项研究检查了宏观表面特征(包括疏水性,表面电荷和粗糙度)在宏观和纳米尺度上细菌与基质的初始附着中的作用。

著录项

  • 作者

    Morrow, Jayne Billmayer.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Environmental.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号