首页> 外文学位 >Highly-Strained P-type Modulation Doped Active Regions for High-Speed VCSELs.
【24h】

Highly-Strained P-type Modulation Doped Active Regions for High-Speed VCSELs.

机译:高速VCSEL的高应变P型调制掺杂有源区。

获取原文
获取原文并翻译 | 示例

摘要

In the age of ubiquitous computing, we are never far from the data we need and even the ones we don't. To support this constant stream of information, large central facilities called data centers are used to process, route and store the data before it beaming it to your favorite device. The bottleneck for these sprawling data centers lie in the movement of data from one point to another and at increasingly higher speeds. The traditional network of copper wires is currently at odds with growth trends because they must be shortened to achieve the necessary higher speeds while data centers are only getting larger. A far more promising solution is to transmit data through fiber optical cables using high-speed vertical cavity surface emitting lasers (VCSELs) which can operate at higher speeds, use less energy, and can be built at low-cost. In this dissertation I demonstrate for the first time, the simultaneous use of p-type modulation doping in highly-strained 1060 nm QW VCSELs to simultaneously achieve high differential gain and low damping which increases the intrinsic bandwidth from 23 to 43 GHz. Additionally, the separate confinement heterostructure (SCH) surrounding the active region is adjusted to decrease the accumulation of carriers through the growth of graded heteorjunctions which ultimately reduces electrical parasitics. Optimized growth techniques for low resistance p-DBR mirrors are also shown as a means to reduce parasitics. I will also demonstrate a method for extending the single mode operating current range by scaling down device size to induce mode-selective loss. With these enhancements the VCSELs presented here are able to achieve 25 Gbps operation which is faster than the current 10 Gbps standard. Moreover, these lasers required only 400 fJ/bit at this data rate which is far below the commonly accepted 1 pJ/bit optical interconnects feasibility target.
机译:在无处不在的计算时代,我们离需要的数据甚至是不需要的数据都不远。为了支持这种持续不断的信息流,在将数据发送到您喜欢的设备之前,使用了称为数据中心的大型中央设施来处理,路由和存储数据。这些庞大的数据中心的瓶颈在于数据从一个点到另一个点的移动以及越来越高的速度。传统的铜线网络目前与增长趋势不符,因为必须缩短它们以实现必要的更高速度,而数据中心只会变得越来越大。更有前景的解决方案是使用高速垂直腔表面发射激光器(VCSEL)通过光缆传输数据,该激光器可以以更高的速度工作,使用更少的能量并且可以低成本制造。在本文中,我首次演示了在高应变1060 nm QW VCSEL中同时使用p型调制掺杂,以同时实现高差分增益和低阻尼,从而将固有带宽从23 GHz增加到43 GHz。另外,围绕有源区的单独的限制异质结构(SCH)进行了调整,以通过梯度异质结的生长减少载流子的积累,最终减少了电寄生现象。低电阻p-DBR镜的优化生长技术也显示为减少寄生效应的一种手段。我还将演示一种通过缩小器件尺寸以引起模式选择损耗来扩展单模工作电流范围的方法。通过这些增强功能,此处介绍的VCSEL能够实现25 Gbps的运行速度,比目前的10 Gbps标准更快。此外,这些激光器在此数据速率下仅需要400 fJ / bit,远低于公认的1 pJ / bit光学互连可行性目标。

著录项

  • 作者

    Zheng, Yan.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.;Physics General.
  • 学位 D.Eng.
  • 年度 2012
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号