首页> 外文学位 >Functional dissection of molecular mechanisms underlying host invasion and replication in the obligate intracellular pathogen Toxoplasma gondii.
【24h】

Functional dissection of molecular mechanisms underlying host invasion and replication in the obligate intracellular pathogen Toxoplasma gondii.

机译:功能解析分子机制的主机入侵和复制专心的细胞内病原体弓形虫。

获取原文
获取原文并翻译 | 示例

摘要

In the first section of this dissertation, I describe the discovery and functional analysis of a Toxoplasma palmitoyl acyl transferase (TgDHHC7) that localizes to the surface of the rhoptries. Remarkably, conditional disruption of this enzyme results in a loss of apical tethering of the rhoptries and a complete block in their function, allowing for a definitive establishment of their role in invasion but not replication or egress. Palmitoylation by membrane-resident PATs is a well-characterized mechanism for recruiting proteins to target membrane systems. Therefore, it is likely that TgPAT1 facilitates apical tethering of rhoptries by recruiting one or more proteins to the cytosolic face of the rhoptry membrane which then serve to mediate docking. Indeed, knockdown of the palmitoylated rhoptry armadillo-repeat protein TgARO recapitulates loss of TgDHHC7, showing this protein is also required for rhoptry tethering and strongly suggesting it is a target of TgDHHC7.;During invasion, a complex of the rhoptry neck proteins RON2/4/5/8 localizes to the MJ where it is thought to provide a stable anchoring point for host penetration. This complex is also believed to serve as a molecular filter that restricts access of host plasma membrane proteins to the nascent parasitophorus vacuole, protecting it from lysosomal fusion. During the initiation of invasion, the preformed MJ/RON complex is injected into the host cell where RON2 spans the plasma membrane while RON4/5/8 localize to its cytosolic face. While an important interaction between a parasite surface-bound adhesin, AMA1, and RON2 outside of the host cell has been elucidated, little is known about the interactions and role of the MJ/RONs present within the host cytosol. In the second section, I provide a comprehensive analysis of RON5. Using a conditional knockdown approach, I show RON5 is critical for the organization of the MJ RON complex and that disruption of this complex results in a block in rhoptry secretion and host invasion, demonstrating the importance of MJ RONs for host entry. Furthermore, domain analysis of RON5 using functional complementation reveals that a C-terminal region of RON5 is critical for RON2 stability and invasion, defining the first functionally important domain in RON5.;Apicomplexan parasites undergo complex life cycles, employing unique forms of internal budding for their replication. The simplest example of these is the Toxoplasma binary division system known as endodyogeny, wherein two daughter parasites are assembled within an intact mother cell. Internal budding is facilitated through the de novo construction of an inner membrane complex (IMC), a series of flattened vesicles and underlying cytoskeletal features that provides the scaffold for daughter cell assembly within the cytosol. Little is known regarding the molecular mechanisms that orchestrate internal budding. The final section of this work identifies the apicomplexan-specific IMC Sub-compartment Protein (ISP) family of IMC proteins in Toxoplasma. These proteins are organized into distinct sub-compartments within the IMC and this arrangement was found to depend on coordinated myristoylation and palmitoylation of conserved N-terminal residues in each protein as well as a unique hierarchical targeting mechanism. Interestingly, while a replicating parasite typically produces two daughters per round of division, disruption of ISP2 results in the assembly of aberrant numbers of daughters with a corresponding loss in parasite fitness indicating a role for this family in the control of budding. Together, these studies provide valuable new insights into host cell invasion and parasite division in this important opportunistic pathogen.
机译:在本论文的第一部分中,我描述了定位于重晶石表面的弓形虫棕榈酰基酰基转移酶(TgDHHC7)的发现和功能分析。值得注意的是,该酶的条件性破坏会导致变种的顶端束缚丧失,并完全阻断其功能,从而确定其在入侵中的作用,但不能确定其复制或外出的作用。膜驻留式PAT的棕榈酰化是将蛋白质募集到目标膜系统的一种公认的机制。因此,TgPAT1可能通过将一种或多种蛋白质募集到rhoptry膜的胞质表面来促进对接,从而促进对接。的确,敲除棕榈酰化的rhoptry犰狳重复蛋白TgARO可以概括TgDHHC7的丢失,表明该蛋白也是rhoptry束缚的必需蛋白,并强烈暗示它是TgDHHC7的靶标。 / 5/8定位到MJ,据认为该MJ可为宿主穿透提供稳定的锚定点。还认为该复合物充当分子过滤器,其限制宿主质膜蛋白进入新生的寄生虫空泡,从而保护其免于溶酶体融合。在入侵开始期间,将预先形成的MJ / RON复合物注入宿主细胞,其中RON2跨过质膜,而RON4 / 5/8定位于其胞质面。尽管阐明了宿主细胞外的寄生虫表面结合的粘附素,AMA1和RON2之间的重要相互作用,但对于宿主细胞溶胶中存在的MJ / RON的相互作用和作用知之甚少。在第二部分中,我将对RON5进行全面分析。使用条件敲低方法,我证明RON5对MJ RON复合物的组织至关重要,并且破坏该复合物会导致Rhoptry分泌和宿主入侵受阻,证明MJ RON对宿主进入的重要性。此外,使用功能互补对RON5进行结构域分析显示,RON5的C端区域对于RON2的稳定性和入侵至关重要,定义了RON5中的第一个功能上重要的结构域.Apicomplexan寄生虫经历了复杂的生命周期,采用内部发芽的独特形式他们的复制。其中最简单的例子是弓形虫二元分裂系统,称为内生性,其中两个子寄生虫被组装在完整的母细胞内。内膜复合物(IMC)的从头构建,一系列扁平囊泡和基础细胞骨架特征可为内部出芽提供便利,从而为细胞溶胶内的子代细胞组装提供支架。关于协调内部发芽的分子机制知之甚少。这项工作的最后一部分确定了弓形虫中IMC蛋白的apicomplexan特异性IMC亚房蛋白(ISP)家族。这些蛋白质在IMC中被组织为不同的子小室,并且发现这种排列取决于每种蛋白质中保守的N末端残基的协同肉豆蔻酰化和棕榈酰化以及独特的分级靶向机制。有趣的是,虽然复制的寄生虫通常每轮分裂产生两个女儿,但ISP2的破坏导致异常数目的女儿的装配,并相应地降低了寄生虫的适应性,表明该家族在控制出芽中起作用。总之,这些研究为这种重要的机会病原体的宿主细胞入侵和寄生虫分裂提供了有价值的新见解。

著录项

  • 作者

    Beck, Joshua Ryan.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Cell.;Biology Parasitology.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 332 p.
  • 总页数 332
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号