首页> 外文学位 >Electrical Detection and Actuation of Single Biological Cells with Application to Deformability Cytometry for Markerless Diagnostics.
【24h】

Electrical Detection and Actuation of Single Biological Cells with Application to Deformability Cytometry for Markerless Diagnostics.

机译:单个生物细胞的电检测和启动及其在无标记诊断中的可变形细胞计数法的应用。

获取原文
获取原文并翻译 | 示例

摘要

An all-electrical system is developed to actuate and detect single biological cells in a microfluidic channel for diagnostic applications. Interdigitated electrodes fabricated on the channel floor transfer a high frequency signal for capacitance detection and a low frequency signal for dielectrophoretic actuation. In the fluid-filled channel, a pressure-driven flow propels single biological cells, which induce time-dependent capacitance signatures as they pass over the electrodes. With a sub-attofarad (≈ 0.15 aF RMS, 53 Hz bandwidth) capacitance resolution, this system detects biological cells (e.g., 1 yeast cell ≈ 50 aF) and their deflections (1 µm ≈ 5 aF) from exerted dielectrophoretic forces (≥ 5 pN). Electrical detection of cell actuation by strong DEP forces provides an avenue for both inducing and monitoring the deformation of viscoelastic cells.;A strong and repulsive dielectrophoretic force can be used to press a biological cell into a channel wall. When this occurs, the mechanical properties of the cell can be investigated by capacitively monitoring the cell-to-wall interaction. The nature of the resulting interaction is shown to depend on the mechanical properties of the cell (surface morphology and viscoelastic properties). Various mammalian cell types such as Chinese Hamster Ovary (CHO) cells, mouse fibroblasts, human blood cells, human breast cells and their tumorogenic phenotypes are investigated using this system. Between these populations, the effective Young's modulus varies widely from 20 Pa (neutrophils) to 1-2 GPa (polystyrene microspheres). The viability and phenotype of a biological cell are known to reflect its mechanical and electrical properties. Consequently, this work investigates whether dielectrophoretically induced cell deformations are correlated with corresponding variations in capacitance, which could be used for discriminating cell phenotypes in the future.
机译:开发了一种全电气系统,以启动和检测微流体通道中的单个生物细胞,以用于诊断应用。在通道底面上制造的叉指式电极传输用于电容检测的高频信号和用于介电泳驱动的低频信号。在充满流体的通道中,压力驱动的流动推动单个生物细胞,这些生物细胞在通过电极时会诱导出与时间有关的电容信号。该系统具有亚attarafarad(≈ 0.15 aF RMS,53 Hz带宽)的电容分辨率,可检测生物细胞(例如1个酵母细胞≈ 50 aF)及其因介电电泳力而产生的偏转(1 µm≈ 5 aF)。 (≥5 pN)。通过强大的DEP力对细胞致动进行电学检测,为诱导和监测粘弹性细胞的变形提供了一种途径。;强大而排斥的介电泳力可用于将生物细胞压入通道壁。发生这种情况时,可以通过电容性监视单元壁相互作用来研究单元的机械性能。结果表明,相互作用的性质取决于电池的机械性能(表面形态和粘弹性)。使用该系统研究了多种哺乳动物细胞类型,例如中国仓鼠卵巢(CHO)细胞,小鼠成纤维细胞,人血细胞,人乳腺细胞及其致瘤表型。在这些种群之间,有效杨氏模量从20 Pa(嗜中性粒细胞)到1-2 GPa(聚苯乙烯微球)变化很大。已知生物细胞的生存力和表型反映了其机械和电学性质。因此,这项工作研究了介电泳诱导的细胞变形是否与相应的电容变化相关,该电容变化将来可用于区分细胞表型。

著录项

  • 作者

    Ferrier, Graham Alan.;

  • 作者单位

    University of Manitoba (Canada).;

  • 授予单位 University of Manitoba (Canada).;
  • 学科 Biology Cell.;Engineering Electronics and Electrical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号