首页> 外文学位 >Multifunctional polymeric nanocomposites fabricated by incorporation of exfoliated graphene nanoplatelets and their application in bipolar plates for polymer electrolyte membrane fuel cells.
【24h】

Multifunctional polymeric nanocomposites fabricated by incorporation of exfoliated graphene nanoplatelets and their application in bipolar plates for polymer electrolyte membrane fuel cells.

机译:通过掺入剥落的石墨烯纳米片制备的多功能聚合物纳米复合材料及其在聚合物电解质膜燃料电池双极板中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this research is to investigate the potential of using exfoliated graphene nanoplatelets, GNP, as the multifunctional nano-reinforcement in fabricating polymer/GNP nanocomposites and then explore their prospective applications in bipolar plates for polymer electrolyte membrane (PEM) fuel cells. Firstly, HDPE (high density polyethylene)/GNP nanocomposites were fabricated using the conventional compounding method of melt-extrusion followed by injection molding. The mechanical properties, crystallization behaviors, thermal stability, thermal conductivity, and electrical conductivity of the resulting HDPE/GNP nanocomposites were evaluated as a function of GNP concentration. Results showed that HDPE/GNP nanocomposites exhibit equivalent flexural modulus and strength to HDPE composites filled with other commercial reinforcements but they have superior impact strength. By investigating the crystallization behavior of HDPE/GNP nanocomposites, it was found that GNP is a good nucleating agent at low loading levels and as a result can significantly increase crystallization temperature and crystallinity of HDPE. At high GNP loadings, however, the close proximity of GNP particles retards the crystallization process. The thermal stability and thermal conductivity of HDPE/GNP nanocomposites were significantly enhanced due to the excellent thermal properties of GNP. Meanwhile, results indicated that the percolation threshold of these nanocomposites prepared by the conventional melt-extrusion and injection molding is relatively high at around 10--15 vol% GNP loading. To enhance the electrical conductivity of HDPE/GNP nanocomposites, two special processing methods named solid state ball milling (SSBM) and solid state shear pulverization (SSSP) were studied. The mechanism by which SSBM and SSSP are capable of producing lower percolation or higher electrical conductivity is to coat the polymer surface by GNP platelets which facilitate the formation of conductive networks during injection molding. However, it was noted that the mechanical and thermal properties of the resulting nanocomposites were compromised at high GNP loadings. A wax coating method was thus applied which is capable of improving both the electrical and mechanical properties in the resulting HDPE/GNP nanocomposites due to a greatly enhanced GNP dispersion. The last but not least, the feasibility of using highly conductive GNP nanocomposites to substitute conventional metallic and graphite bipolar plates was discussed. Polymer/GNP nanocomposites for bipolar plates were made by SSBM and compression molding on account of its good processability and the resulted high electrical conductivity. HDPE/GNP bipolar plates were selected for low-temperature applications, while PPS (polyphenylene sulfide)/GNP bipolar plates were fabricated for a high-temperature usage. Because of the excellent mechanical, structural, thermal and electrical properties of GNP, it is believed that the bipolar plates made from GNP nanocomposites will allow lighter weight of PEM fuel cells with enhanced performance which are particularly suited for automotive applications.
机译:这项研究的重点是研究使用剥落的石墨烯纳米片GNP作为制造聚合物/ GNP纳米复合材料的多功能纳米增强材料的潜力,然后探索其在聚合物电解质膜(PEM)燃料电池双极板中的潜在应用。首先,使用熔融挤出然后注射成型的常规复合方法制造HDPE(高密度聚乙烯)/ GNP纳米复合材料。评估所得HDPE / GNP纳米复合材料的机械性能,结晶行为,热稳定性,热导率和电导率与GNP浓度的关系。结果表明,HDPE / GNP纳米复合材料的弯曲模量和强度与填充其他市售增强材料的HDPE复合材料相当,但它们具有出色的冲击强度。通过研究HDPE / GNP纳米复合材料的结晶行为,发现GNP在低载荷水平下是一种良好的成核剂,因此可以显着提高HDPE / GNP的结晶温度和结晶度。然而,在高的GNP含量下,GNP颗粒的紧密接近会延迟结晶过程。 HDPE / GNP纳米复合材料的热稳定性和导热性由于GNP的优异热性能而得到显着提高。同时,结果表明,通过常规的熔融挤出和注射成型制备的这些纳米复合材料的渗滤阈值相对较高,在大约10--15vol%的GNP负载量下。为了提高HDPE / GNP纳米复合材料的电导率,研究了两种特殊的加工方法,即固态球磨(SSBM)和固态剪切粉碎(SSSP)。 SSBM和SSSP能够产生较低的渗滤或较高的电导率的机制是通过GNP血小板覆盖聚合物表面,这有助于在注塑过程中形成导电网络。但是,应注意的是,在高GNP含量下,所得纳米复合材料的机械和热性能受到损害。因此施加了蜡涂覆方法,由于极大地提高了GNP分散性,该方法能够改善所得HDPE / GNP纳米复合材料的电学和机械性能。最后但并非最不重要的一点是,讨论了使用高导电性GNP纳米复合材料替代常规金属和石墨双极板的可行性。由于其良好的可加工性和所产生的高电导率,通过SSBM和压塑法制备了用于双极板的聚合物/ GNP纳米复合材料。选择HDPE / GNP双极板用于低温应用,而制造PPS(聚苯硫醚)/ GNP双极板则用于高温应用。由于GNP具有出色的机械,结构,热和电性能,因此可以相信,由GNP纳米复合材料制成的双极板将使PEM燃料电池重量更轻,性能得到增强,特别适合于汽车应用。

著录项

  • 作者

    Jiang, Xian.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Chemical.;Plastics Technology.;Engineering Materials Science.;Energy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号