首页> 中国专利> 一种石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板及其制备方法

一种石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板及其制备方法

摘要

本发明涉及一种石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板及其制备方法,属于燃料电池技术领域。本发明所述的双极板由金属板、极性氧化膜层、石墨烯掺杂的导电聚合物膜层组成,所述极性氧化膜层覆盖在金属板表面,所述石墨烯掺杂的导电聚合物膜层覆盖在极性氧化膜层表面,所述石墨烯掺杂的导电聚合物膜层的厚度为0.005~0.3mm,所述极性氧化膜层的厚度为5~30nm,所述金属板的厚度为0.1~2mm。本发明是利用电化学合成方法将石墨烯掺杂导电聚合物膜沉积在预处理后的不锈钢板表面,通过本发明制得的金属双极板接触电阻较小,腐蚀电流密度低,金属基板与导电聚合物膜结合牢固度高,且本发明方法简单,加工成本低,可以批量生产。

著录项

  • 公开/公告号CN105552399A

    专利类型发明专利

  • 公开/公告日2016-05-04

    原文格式PDF

  • 申请/专利权人 湖北大学;王麒钧;

    申请/专利号CN201510937054.5

  • 申请日2015-12-15

  • 分类号H01M8/0228(20160101);H01M8/0206(20160101);H01M8/0221(20160101);

  • 代理机构武汉帅丞知识产权代理有限公司;

  • 代理人朱必武

  • 地址 430062 湖北省武汉市武昌区友谊大道368号

  • 入库时间 2023-12-18 15:46:18

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-06-26

    授权

    授权

  • 2016-06-01

    实质审查的生效 IPC(主分类):H01M8/0228 申请日:20151215

    实质审查的生效

  • 2016-05-04

    公开

    公开

说明书

技术领域

本发明属于燃料电池技术领域,涉及一种质子交换膜燃料电池双极板及其制备方 法,更具体地说,本发明涉及一种石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金 属双极板及其制备方法。

背景技术

质子交换膜燃料电池(PEMFC)是继碱性燃料电池、磷酸燃料电池、熔融碳酸盐 燃料电池、固体氧化物燃料电池后发展起来的第五代燃料电池,是以质子交换膜为电解 质,氢气或重整气为燃料,空气或氧气为氧化剂的新型环保燃料电池,是一种将燃料和 氧化剂中的化学能转化为电能的发电装置。双极板是将PEMFC单电池串联起来组成电 池堆的关键部件,其主要作用是分隔氧化剂和还原剂,收集电流,分导原料气体及产生 物。双极板对电池的体积、重量、成本,燃料电池的运行性能都有很大的影响。目前, 有关双极板的研究主要集中在双极板的材料选择和流场设计方面,特别是针对基体材料 的选用和基体材料表面的改性方面做了很多工作,最终目的都是为了减少双极板的腐 蚀,延长燃料电池寿命,降低电池成本,缩小电池体积,进一步提高电池工作效率。双 极板作为把单体燃料电池连接起来和电池内反应环境的部件,质子交换膜燃料电池对双 极板的导电性和防腐蚀性能具有很高的要求。

目前已经产业化了的燃料电池大多采用铜(或银)镀金材料或者石墨块作为双极 板材料,他们各有优缺点:一、铜(或银)镀金材料导电导热性能都非常好,也可做得 很薄,质量轻。然而,由于白银、黄金价格昂贵,由多个PEMFC单电池串联起来组成 电池堆成本很难降下来。另外假若铜电镀金过程中出现电镀质量问题的话,基体材料铜 是很容易被氧化腐蚀的,这会大大降低电池的寿命。二、石墨块材料,导电性能优越, 价格便宜,但导热性能稍差,最重要的是石墨块双极板不可能做得很薄,这使多个 PEMFC单电池串联起来组成电池堆体积和重量都很大,不方便做成便携式电池。另外, 石墨块双极板材料很脆,电池不小心使用,双极板若受到冲击就容易破碎,整个电池就 坏了。

不锈钢导电,导热性较好,易加工和强度较高(0.01mm厚的不锈钢薄板都有很好 的强度),尤其是其抗氧化性能优越,在燃料电池的氧化环境中比铜的抗腐蚀性能好得 多,加上其较低的成本,因此,不锈钢材料具有成为理想双极板骨架材料的潜力。但比 起贵金属(如:金)来说,多数不锈钢在质子交换膜运行环境下阳极一侧容易发生腐蚀、 阴极一侧氧化膜也容易逐渐增厚,腐蚀产物会逐渐在MEA上聚集,既导致催化剂中毒 又降低膜电导。另外不锈钢材料本体导电性能相对较差,这些都影响电池性能。

导电高分子材料导电性能可在导体和绝缘体之间变化、在常用的温度范围内具有 很高的稳定性,它在燃料电池双极板方面的应用也受到愈来愈多的重视。国内燃料电池 方面知名学者黄乃宝使用电化学沉积纳米聚苯胺导电膜对不锈钢双极板进行改性,并对 改性双极板在模拟PEMFC阳极环境下的电化学性能进行了测试。结果表明,纳米聚苯 胺膜层能使不锈钢在模拟腐蚀液中的腐蚀电位提高;在模拟阳极操作电位下,经过10h 恒电位极化,改性双极板没有被观察到膜层的降解和脱落。然而,导电高分子材料,不 管怎样它还是一种高分子,其导电性能、耐老化性能远比常用金属导体(如铜和银)要 差很多。因此,它作为燃料电池双极板的表面材料还有很多要改进的地方。另外,公开 号为CN101488574A的专利申请也公开了一种质子交换膜燃料电池不锈钢双极板及其 制备方法,所述不锈钢双极板表面覆盖一层聚吡咯/聚苯胺耐蚀、导电复合涂层,导电 复合涂层厚度为10~25μm,底层聚吡咯涂层与顶层的聚苯胺涂层厚度比为1:1~4之间, 所述涂层采用电化学的方法合成,但是该方法合成顶层和底层涂层的条件苛刻,均需使 用冰水浴控制合成温度为0~5℃左右,在暗箱内进行避免光照,且制得的金属双极板 的接触电阻较大,导电性能不够理想。

石墨烯作为一种近几年兴起的新型无机材料,目前是世上最薄却是最坚硬的纳米材 料,几乎是完全透明的;导热系数高达5300W/m·K,高于碳纳米管和金刚石,常温下 其电子迁移率超过纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,是 到目前世上已知的电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,本 身坚硬又具有良好的导热性能,是适合用来制作或者改性双极板材料的优良材料。本发 明的发明人所在课题组在前期的研究成果中公开了“石墨烯改性聚苯胺/不锈钢复合材 料双极板”,用电沉积方法在聚苯胺/不锈钢表面沉积一层还原氧化石墨烯(RGO)薄膜, 并对薄膜的成分以及改性后双极板的导电、耐腐蚀等性能进行了研究,结果表明改性后 的RGO/聚苯胺/不锈钢双极板的腐蚀电流密度下降了一个数量级,且改性后双极板的阻 抗显著减小,但采用该技术制得的双极板聚苯胺层与RGO薄膜层分层排列,容易引起 层与层之间的结合牢固度不高的问题,且将RGO薄膜作为外层可能不耐磨,最终影响 双极板的使用寿命。

发明内容

本发明针对背景技术中所指出的问题及现有技术存在的不足,本发明的目的在于提 供一种石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板及其制备方法。

为了实现本发明的上述目的,发明人经过大量的试验研究,开发出了一种石墨烯掺 杂导电聚合物修饰的质子交换膜燃料电池金属双极板,所述双极板由金属板、极性氧化 膜层、石墨烯掺杂的导电聚合物膜层组成,所述极性氧化膜层覆盖在金属板表面,所述 石墨烯掺杂的导电聚合物膜层覆盖在极性氧化膜层表面,所述石墨烯掺杂的导电聚合物 膜层的厚度为0.005~0.3mm,所述极性氧化膜层的厚度为5~30nm,所述金属板的厚 度为0.1~2mm。

进一步地,上述技术方案中所述导电聚合物可以为聚苯胺、聚吡咯或其它导电高分 子材料。

进一步地,上述技术方案中所述金属板为不锈钢板或铜板。

进一步优选地,上述不锈钢板为普通的不锈钢板材料,如304,316,316L不锈钢 等材料。

本发明的另一目的在于提供一种上述所述石墨烯掺杂导电聚合物修饰的质子交换 膜燃料电池金属双极板的制备方法,所述方法包括如下步骤:

(1)制备电解液:将导电聚合物单体、羧基化石墨烯和无机酸分散在去离子水中, 然后边搅拌边超声分散均匀,制得电解液,静置备用,所述电解液中无机酸的浓度为 0.1~1mol/L,导电聚合物单体的浓度为0.05~1mol/L,羧基化石墨烯的质量分数为1~ 10%;

(2)金属板预处理:选取厚度为0.1~2mm的金属板,依次利用不同规格的砂纸 对金属板进行打磨,然后用丙酮清洗干净后放入含有硝酸和双氧水的氧化液中进行常温 氧化处理3~10分钟,使金属板表面形成极性氧化膜层,再用去离子水冲洗干净,吹干 后备用;

(3)在预处理后的金属板表面电化学合成石墨烯掺杂导电聚合物膜层:采用三电 极体系,在电解池中利用电化学合成方法,将所述金属板放入步骤(1)所述制得的电 解液中,以金属板为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极,在步骤 (2)所述预处理后的金属板的极性氧化膜层表面化学合成同时沉积石墨烯掺杂的导电 聚合物膜层,然后将沉积有导电聚合物膜层的金属板放入烘箱中加热固化,制得所述石 墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板。

进一步地,上述技术方案步骤(3)中所述电化学合成技术可以为恒电位法、计时 电流法或循环伏安法中的任一种电化学方法。

更进一步地,上述技术方案步骤(3)中所述电化学合成方法为计时电流法,具体 沉积条件为:电压范围为-0.2~1.3V,时间为60~600s。

进一步地,上述技术方案步骤(2)中所述氧化液中硝酸的浓度为5~10%,所述双 氧水的浓度为3~5%。

本发明上述技术方案步骤(1)中所述的羧基化石墨烯是将石墨烯粉末在70~100℃ 条件下经强酸溶液酸化、然后稀释、过滤后制得。

进一步地,上述技术方案步骤(3)中所述烘箱的温度为120~160℃,固化时间为 1~6h。

进一步地,上述技术方案中步骤(2)中所述的每种砂纸对金属板打磨的次数为30~ 100次。

本发明上述制备方法中步骤(2)的目的是使不锈钢板表面去掉致密的氧化层,同 时使之羟基化,赋之与极性,以便更好地与导电聚合物膜层结合。

与现有技术相比,本发明具有如下的有益效果:

(1)经本发明石墨烯掺杂的导电聚合物膜层改性后的金属双极板可在不影响双极 板其他性能的同时使其在模拟电池阳极环境下的腐蚀电流密度下降1~3个数量级,接 触电阻由于石墨烯的存在相比较于纯导电聚合物改性的不锈钢双极板下降了100~ 400mΩ·cm2,和未经改性的不锈钢双极板相比,下降了500~1000mΩ·cm2

(2)本发明的金属基板与石墨烯掺杂的导电聚合物膜层之间有一层薄极性氧化膜 层,使得金属基板与导电聚合物膜结合牢固度高,且制得的金属双极板耐磨性更强,延 长了双极板的使用寿命;

(3)本发明是将石墨烯掺杂导电聚合物膜沉积在预处理后的不锈钢板表面,极板 的主体仍是不锈钢,保证了双极板仍具有耐腐蚀、结构强度高、易加工,成本低的优点;

(4)本发明利用电化学合成技术,通过同时实施电聚合导电聚合物和电沉积石墨 烯来对预处理后的不锈钢双极板进行改性,在不锈钢板上直接合成并沉积导电聚合物/ 石墨烯薄膜,即石墨烯掺杂导电聚合物膜,因此本发明制备工艺简单,加工成本低,可 以批量生产;

(5)本发明的石墨烯掺杂导电聚合物膜对质子交换膜没有任何污染,并且可以形 成阻隔层,减缓MEA的中毒;

(6)本发明适用于低温燃料电池双极板的表面改性,如:质子交换膜燃料电池不 锈钢双极板的表面改性。

附图说明

图1为本发明实施例1制得的石墨烯掺杂聚苯胺导电聚合物修饰的质子交换膜燃料 电池不锈钢双极板的结构示意图,其中,1-不锈钢板,2-极性氧化膜层,3-导电聚苯胺/ 石墨烯膜层。

具体实施方式

以下通过实施例形式对本发明的上述内容再作进一步的详细说明,但不应将此理 解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容所实现的技术 均属于本发明的范围。

下述实施例中的羧基化石墨烯均是采用下述方法制得,包括如下步骤:

(11)向圆底烧瓶中加入72ml浓硫酸和36ml浓硝酸,在冰浴条件下磁力搅拌15 分钟后,向烧瓶中缓慢加入2g天然鳞片石墨,继续不断搅拌避免石墨团聚,待石墨分 散均匀后,再向烧瓶中缓慢加入44g氯酸钾,控制氯酸钾的滴加时间为1h,然后撤除 冰浴,在室温下反应96小时,反应完成后,天然鳞片石墨就被氧化成了氧化石墨,然 后将溶液倒入1000ml的烧杯中,加入去离子水稀释,用玻璃棒搅拌均匀之后,静置1 小时,待溶液分层后抽滤,收集固体,制得氧化石墨固体;

(12)用去离子水将100g上述步骤(11)制得的氧化石墨固体溶解在1000ml的 烧杯中,加入质量浓度为5%的盐酸15ml,搅拌均匀后,静置4小时后抽滤,收集固 体,如此重复两次;然后静置一天,待溶液的颜色变成了暗红色后,用去离子水稀释, 然后超声15分钟,接着离心,抽滤,收集滤液,得到均匀分散的氧化石墨烯溶液,在 氧化石墨烯溶液中加入20ml浓度为5mol/L的氢氧化钠溶液,用玻璃棒搅拌均匀后, 静置30分钟,氧化石墨烯固体被絮凝出来,然后抽滤,收集固体,接着用乙醇洗涤至 中性,以除去絮凝物当中的氢氧化钠,最后将所述固体在40℃的真空干燥箱中干燥至 恒重,即得到氧化石墨烯固体;

(13)称取100mg上述步骤(12)所述制得的氧化石墨烯固体,加入到500ml的 圆底烧瓶中,然后加入300ml去离子水,超声分散30分钟,使氧化石墨烯完全溶解, 然后继续加入75ul水合肼和400ul氨水,在95℃油浴条件下磁力搅拌反应4小时,接 着抽滤,用去离子水洗涤至中性,最后在真空干燥箱中烘干至恒重,制得石墨烯粉末;

(14)利用50ml混合强酸将步骤(12)所述制得的石墨烯粉末在70~100℃温度 下酸化30min,然后稀释、过滤得到羧基化石墨烯,其中,所述混合强酸由浓硫酸和浓 硝酸配制而成,所述浓硫酸和浓硝酸的体积比为3:1。

下述实施例中的金属板均采用不锈钢板,所述不锈钢板按如下方法进行预处理: 首先选取厚度为0.3mm的不锈钢板,用裁板机裁取大小为13mm×13mm,依次利用500#、 800#、1500#到2000#四种不同规格的砂纸分别对不锈钢板进行打,每种规格的砂纸均 打磨30~100次,然后用丙酮清洗干净后放入含有硝酸和双氧水的氧化液中进行常温氧 化处理3~10分钟,在不锈钢表面形成极性氧化层,然后再用去离子水冲洗干净,吹干 后备用,其中,所述氧化液中所述硝酸的浓度为5~10%,所述双氧水的浓度为3~5%。 对金属板进行预处理的目的是使金属板表面去掉致密的氧化层,同时使之羟基化,赋之 与极性,以便更好地与导电高分子层结合。

以下实施例中所述电位都是相对于甘汞电极而言的。

实施例1

本实施例的一种石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板,所 述双极板由316L不锈钢板1、极性氧化膜层2、导电聚苯胺/石墨烯膜层3组成,如附 图1所示,所述极性氧化膜层2覆盖在不锈钢板1表面,所述导电聚苯胺/石墨烯膜层3 覆盖在极性氧化膜层2表面,所述导电聚苯胺/石墨烯膜层3的厚度约为0.03mm,所述 极性氧化膜层的厚度约为10nm,所述不锈钢板1的厚度为0.3mm。

本实施例上述所述的石墨烯掺杂聚苯胺修饰的质子交换膜燃料电池金属双极板的 制备方法如下:

(1)制备电解液:将导电聚合物单体、羧基化石墨烯和无机酸分散在去离子水中, 然后边搅拌边超声分散25分钟,制得电解液,静置备用,所述电解液中H2SO4的浓度 为0.5mol·L-1,苯胺单体的浓度为0.3mol·L-1,羧基化石墨烯的质量分数为4%;

(2)在预处理后的不锈钢板表面电化学合成并沉积石墨烯掺杂导电聚合物膜层: 电化学合成实验在常规的三电极体系中进行,在电解池中采用计时电流法,将所述金属 板放入步骤(1)所述制得的电解液中,以预处理后的不锈钢板为工作电极,铂片电极 为辅助电极,饱和甘汞电极为参比电极,控制扫描电压范围为-0.2~1.3V,时间为300s, 将石墨烯/聚苯胺复合材料电化学合成同时沉积到不锈钢电极上的极性氧化膜层表面, 然后将沉积有石墨烯/聚苯胺复合膜层的金属板放入125℃的烘箱中加热固化6h,制得 所述石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板。

将上述制得的石墨烯掺杂导电聚苯胺修饰的不锈钢片在模拟质子交换膜燃料电池 (PEMFC)阴极环境(80℃,腐蚀液0.01mol/LNa2SO4+0.01mol/LHCl溶液,连续通入 H2两小时后放入试样)下的耐蚀性和导电性能进行了测试,测试结果表明,聚苯胺/石 墨烯薄膜对于增强316L不锈钢抗腐蚀性能有显著效果,空白不锈钢自腐蚀电流密度为 1.0581*10-4Amp/cm2,经过石墨烯/聚苯胺膜修饰过的不锈钢双极板的自腐蚀电流密度为 1.2518*10-6Amp/cm2,石墨烯掺杂导电聚苯胺修饰的不锈钢钢片的自腐蚀电流密度下降 了一个数量级,抗腐蚀性能提高,接触电阻可降低到61mΩ·cm2,电流收集效率明细提 高;通过与单独电化学沉积聚苯胺对比,其缓蚀效率相对于聚苯胺修饰的不锈钢钢片上 升了约30%~40%,相对于表面不做任何修饰的不锈钢上升了50%左右,接触电阻从原 不锈钢基材的732mΩ·cm2,到单独用聚苯胺修饰的356mΩ·cm2,再到目前用石墨烯掺 杂导电聚苯胺修饰的61mΩ·cm2

实施例2

本实施例的一种石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板,所 述双极板由316L不锈钢板1、极性氧化膜层2、导电聚苯胺/石墨烯膜层3组成,所述 极性氧化膜层覆盖在金属板表面,所述石墨烯掺杂的导电聚合物膜层覆盖在极性氧化膜 层表面,所述导电聚苯胺/石墨烯膜层3的厚度约为0.035mm,所述极性氧化膜层的厚 度约为10nm,所述不锈钢板1的厚度为0.3mm。

(1)制备电解液:将导电聚合物单体、羧基化石墨烯和无机酸分散在去离子水中, 然后边搅拌边超声分散30分钟,制得电解液,静置备用,所述电解液中H2SO4的浓度 为0.5mol·L-1,苯胺单体的浓度为0.3mol·L-1,羧基化石墨烯的质量分数为6%;

(2)在预处理后的不锈钢板表面电化学合成石墨烯掺杂导电聚合物膜层:电化学 合成实验在常规的三电极体系中进行,在电解池中采用计时电流法,将所述金属板放入 步骤(1)所述制得的电解液中,以预处理后的不锈钢板为工作电极,铂片电极为辅助 电极,饱和甘汞电极为参比电极,控制扫描电压范围为-0.2~1.3V,时间为300s,将石 墨烯/聚苯胺复合材料电化学合成同时沉积到不锈钢电极上的极性氧化膜层表面,然后 将沉积有石墨烯/聚苯胺复合膜层的金属板放入125℃的烘箱中加热固化6h,制得所述 石墨烯掺杂导电聚合物修饰的质子交换膜燃料电池金属双极板。

将上述制得的石墨烯掺杂导电聚苯胺修饰的不锈钢片在模拟质子交换膜燃料电池 (PEMFC)阴极环境(80℃,腐蚀液0.01mol/LNa2SO4+0.01mol/LHCl溶液,连续通入 H2两小时后放入试样)下的耐蚀性和导电性能进行了测试,测试结果表明,聚苯胺/石 墨烯膜对于增强316L不锈钢抗腐蚀性能有显著效果,空白不锈钢的自腐蚀电流密度为 1.0581*10-4Amp/cm2,经过石墨烯/聚苯胺膜修饰过的不锈钢双极板的自腐蚀电流密度为 1.0213*10-6Amp/cm2,石墨烯掺杂导电聚苯胺修饰的不锈钢钢片的自腐蚀电流密度下降 了两个数量级,抗腐蚀性能提高,接触电阻可降低到38mΩ·cm2,电流收集效率明细提 高。通过与单独电化学沉积聚苯胺对比,其缓蚀效率相对于聚苯胺修饰的不锈钢钢片上 升了约30%~40%,相对于表面不做任何修饰的不锈钢上升了55%左右。接触电阻从原 不锈钢基材的732mΩ·cm2,到单独用聚苯胺修饰的356mΩ·cm2再到目前用石墨烯掺 杂导电聚苯胺修饰的38mΩ·cm2

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号