首页> 外文学位 >Flexible pavement condition model using clusterwise regression and mechanistic-empirical procedure for fatigue cracking modeling.
【24h】

Flexible pavement condition model using clusterwise regression and mechanistic-empirical procedure for fatigue cracking modeling.

机译:基于聚类回归和机械-经验过程的疲劳路面建模的柔性路面条件模型。

获取原文
获取原文并翻译 | 示例

摘要

Pavement condition prediction modeling is a critical component of a pavement management system (PMS). Accurate prediction models assist agencies in performing cost-effective maintenance or rehabilitation at the proper time, thus most efficiently improving the overall pavement condition under specific budget limits.; The accuracy of a prediction function is dependent on data availability and the modeling method that is employed. The family method, which groups pavements into families and then fits data to a prediction function within each family using the ordinary least squares (OLS) regression method, may result in prediction functions with large scatters, i.e., low predictive accuracy. In this study, a method called clusterwise regression was proposed to be employed to predict the pavement condition ratings (PCR). The clusterwise regression simultaneously determines clusters (families) and corresponding prediction functions. In order to make this method practical, a modification was made by estimating membership of a data point to a cluster utilizing its error terms. An application of the modified clusterwise regression was proposed to predict PCR of future years by directly utilizing the result of the modified clusterwise regression. The results of the study show that the proposed procedure improved the accuracy of predictions from that of the family method. The prediction equations of PCR for flexible pavements in Ohio have been developed.; A simplified mechanistic-empirical based probabilistic method was also used to model one of the major distress types of flexible pavement, that of fatigue cracking. The categorical fatigue cracking ratings were first converted to numerical values. The regression coefficients in the model were then determined by minimizing the differences between the measured and predicted fatigue cracking areas. The estimated fatigue cracking model can predict the occurrence of fatigue cracking for any specified percentage. However, the limited data available from the database restricts the accuracy of the calibrated model.
机译:路面状况预测建模是路面管理系统(PMS)的关键组成部分。准确的预测模型可帮助机构在适当的时间进行具有成本效益的维护或修复工作,从而在特定的预算限制内最有效地改善整体路面状况。预测函数的准确性取决于数据可用性和所采用的建模方法。将路面分组到各个家庭中,然后使用普通最小二乘(OLS)回归方法将数据拟合到每个家庭中的预测函数的家庭方法可能导致预测函数具有较大的分散性,即较低的预测精度。在这项研究中,提出了一种称为聚类回归的方法来预测路面状况等级(PCR)。聚类回归同时确定聚类(族)和相应的预测函数。为了使该方法可行,通过使用其误差项估计数据点到群集的成员资格进行了修改。提出了一种改进的聚类回归的应用,通过直接利用改进的聚类回归的结果来预测未来的PCR。研究结果表明,所提出的程序从族方法中提高了预测的准确性。已经开发了俄亥俄州柔性路面PCR的预测方程。还使用了一种简化的基于机械-经验的概率方法来模拟柔性路面的主要病害类型之一,即疲劳裂纹。首先将分类疲劳裂纹等级转换为数值。然后,通过最小化所测疲劳裂纹面积与预测疲劳裂纹面积之间的差异来确定模型中的回归系数。估计的疲劳裂纹模型可以预测任何指定百分比的疲劳裂纹的发生。但是,数据库中可用的有限数据限制了校准模型的准确性。

著录项

  • 作者

    Luo, Zairen.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号