首页> 外文学位 >A methodology for robust optimization of low-thrust trajectories in multi-body environments.
【24h】

A methodology for robust optimization of low-thrust trajectories in multi-body environments.

机译:在多体环境中对低推力轨迹进行鲁棒优化的方法。

获取原文
获取原文并翻译 | 示例

摘要

Future ambitious solar system exploration missions are likely to require ever larger propulsion capabilities and involve innovative interplanetary trajectories in order to accommodate the increasingly complex mission scenarios. Two recent advances in trajectory design can be exploited to meet those new requirements: the use of low-thrust propulsion which enables larger cumulative momentum exchange relative to chemical propulsion; and the consideration of low-energy transfers relying on full multi-body dynamics. Yet the resulting optimal control problems are hypersensitive, time-consuming and extremely difficult to tackle with current optimization tools.;Therefore, the goal of the thesis is to develop a methodology that facilitates and simplifies the solution finding process of low-thrust optimization problems in multi-body environments. Emphasis is placed on robust techniques to produce good solutions for a wide range of cases despite the strong nonlinearities of the problems. The complete trajectory is broken down into different component phases, which facilitates the modeling of the effects of multiple bodies and makes the process less sensitive to the initial guess.;A unified optimization framework is created to solve the resulting multi-phase optimal control problems. Interfaces to state-of-the-art solvers SNOPT and IPOPT are included. In addition, a new, robust Hybrid Differential Dynamic Programming (HDDP) algorithm is developed. HDDP is based on differential dynamic programming, a proven robust second-order technique that relies on Bellman's Principle of Optimality and successive minimization of quadratic approximations. HDDP also incorporates nonlinear mathematical programming techniques to increase efficiency, and decouples the optimization from the dynamics using first- and second-order state transition matrices.;Crucial to this optimization procedure is the generation of the sensitivities with respect to the variables of the system. In the context of trajectory optimization, these derivatives are often tedious and cumbersome to estimate analytically, especially when complex multi-body dynamics are considered. To produce a solution with minimal effort, an new approach is derived that computes automatically first- and high-order derivatives via multicomplex numbers.;Another important aspect of the methodology is the representation of low-thrust trajectories by different dynamical models with varying degrees of fidelity. Emphasis is given on analytical expressions to speed up the optimization process. In particular, one novelty of the framework is the derivation and implementation of analytic expressions for motion subjected to Newtonian gravitation plus an additional constant inertial force.;Example applications include low-thrust asteroid tour design, multiple flyby trajectories, and planetary inter-moon transfers. In the latter case, we generate good initial guesses using dynamical systems theory to exploit the chaotic nature of these multi-body systems. The developed optimization framework is then used to generate low-energy, inter-moon trajectories with multiple resonant gravity assists.
机译:未来雄心勃勃的太阳系探索任务可能需要更大的推进能力,并涉及创新的行星际轨迹,以适应日益复杂的任务场景。可以利用轨迹设计的两个最新进展来满足这些新要求:低推力推进的使用,与化学推进相比,它可以实现更大的累积动量交换;低能量转移的考虑依赖于完整的多体动力学。然而,由此产生的最优控制问题过于敏感,耗时且使用当前的优化工具很难解决。因此,本论文的目标是开发一种方法,以简化并简化低推力优化问题的求解过程。多体环境。尽管存在很强的非线性问题,但是重点还是放在健壮的技术上,以便为各种情况提供好的解决方案。完整的轨迹分为不同的组成阶段,这有助于对多个实体的效果进行建模,并使过程对初始猜测的敏感性降低。;创建了统一的优化框架,以解决由此产生的多阶段最优控制问题。包括与最新求解器SNOPT和IPOPT的接口。此外,还开发了一种新的,健壮的混合差分动态规划(HDDP)算法。 HDDP基于差分动态编程,差分动态编程是一种可靠的稳健的二阶技术,它依赖于Bellman最优性原理和连续最小化二次逼近。 HDDP还结合了非线性数学编程技术以提高效率,并使用一阶和二阶状态转移矩阵将优化与动力学解耦。对于此优化过程,至关重要的是要针对系统变量生成敏感度。在轨迹优化的背景下,这些导数通常难以处理且难以解析,尤其是考虑到复杂的多体动力学时。为了用最小的精力产生解决方案,推导了一种新方法,该方法可以通过复数自动计算一阶和高阶导数。该方法的另一个重要方面是通过不同程度的不同动力学模型来表示低推力轨迹保真。重点放在解析表达式上,以加快优化过程。尤其是,该框架的新颖之处在于推导和实现了牛顿引力加上附加的恒定惯性力的运动的解析表达式;示例应用包括低推力小行星巡视设计,多次飞越轨迹和行星月球间转移。在后一种情况下,我们使用动力学系统理论来产生良好的初步猜测,以利用这些多体系统的混沌性质。然后,将开发的优化框架用于生成具有多个共振重力辅助的低能量月球间轨迹。

著录项

  • 作者

    Lantoine, Gregory.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 327 p.
  • 总页数 327
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号