首页> 外文学位 >Modeling and Engineering Impact Ionization in Avalanche Photodiodes for Near and Mid Infrared Applications.
【24h】

Modeling and Engineering Impact Ionization in Avalanche Photodiodes for Near and Mid Infrared Applications.

机译:雪崩光电二极管中近红外和中红外应用的建模和工程影响电离。

获取原文
获取原文并翻译 | 示例

摘要

Avalanche photodiodes (APDs) are the preferred photodetector in many applications in which low light levels need to be detected. The reason why APDs are important in such applications is due to their internal gain, which improves the APD's sensitivity. Compared to receivers based on PIN photodiodes, which do not present internal gain, APD-based receivers achieve 5--10 dB improved sensitivity. The origin of the APD's internal gain is the impact ionization process. However, due to the stochastic nature of the impact ionization process the multiplication gain comes at the expense of extra noise. This multiplication noise is called the excess noise, and it is a measure of the gain uncertainty. In addition, as the multiplication gain increases the buildup time, which is the time required for all the impact ionizations to complete, also increases. Thus, for a given multiplication gain the buildup time limits the bandwidth of the APD.;The main challenge for state-of-the-art APDs, operating in linear and Geiger modes, is to achieve higher operating speeds. For application in which the APD is operated in linear mode the limited speed of APD-based receivers have limited their use in systems that operate at 2.5 and 10 Gbps. However, to meet the demand of the exponential growth in data transfer, the telecommunication industry has been moving toward 40-Gbps and 100-Gbps protocols for their core fiber-optic backbone networks alongside the existing 10-Gbps infrastructure operating at the low-loss wavelength of 1.55 microns. Moreover, the fast progress on quantum communications requires Geiger-mode APDs to operate at higher repetition rates. Currently, Geiger-mode APDs are limited to operate at detection rates of about 20 MHz. In addition, there has been relatively little work on infrared APDs, although there are many applications in remote sensing, medical imaging, and environmental monitoring. In particular, there is no GaAs-based APD operating in Geiger mode beyond 2 microns.;This dissertation provides theoretical analysis and experimental exploration of APDs working in linear and Geiger modes in the near infrared (NIR) and mid-infrared (MIR) ranges of wavelength. This research effort is geared to address the aforementioned current challenges of the state-of-the-art APD technology. In the theoretical part of this work the focus is on the development of new theoretical methods that allow us to model, understand, and characterize avalanche photodiodes working in linear and Geiger modes. The objective is that the developed methods help the design and optimization of high performance, high speed APDs. The experimental part of this research effort consists of the design, fabrication and characterization of a novel mid-infrared sensor, based on GaAs technology, called the quantum-dot avalanche photodiode (QDAP). The main motivation for the QDAP is to exploit its potential of working in Geiger mode regime, which can be utilized for single-photon detection. In addition, the QDAP represents the first GaAs-based APD operating in the mid infrared range of wavelength.
机译:雪崩光电二极管(APD)在许多需要检测低光照水平的应用中是首选的光电检测器。 APD在此类应用中之所以重要的原因是由于其内部增益,从而提高了APD的灵敏度。与不具有内部增益的基于PIN光电二极管的接收器相比,基于APD的接收器可实现5--10 dB的改进灵敏度。 APD内部增益的来源是碰撞电离过程。但是,由于碰撞电离过程的随机性,倍增增益是以额外的噪声为代价的。这种乘法噪声称为过大噪声,它是增益不确定性的度量。另外,随着倍增增益的增加,累积时间(所有撞击电离完成所需的时间)也增加。因此,对于给定的乘法增益,建立时间限制了APD的带宽。在线性和Geiger模式下工作的最新型APD的主要挑战是实现更高的工作速度。对于APD以线性模式运行的应用,基于APD的接收机的有限速度限制了它们在2.5 Gbps和10 Gbps的系统中的使用。但是,为了满足数据传输指数增长的需求,电信行业已经朝着其核心光纤骨干网朝着40 Gbps和100 Gbps协议发展,同时要求现有的10 Gbps基础设施以低损耗运行。波长为1.55微米。此外,量子通信的飞速发展要求盖革模式APD必须以更高的重复频率运行。当前,盖革模式APD仅限于以大约20 MHz的检测速率运行。此外,尽管在红外遥感,医学成像和环境监测中有许多应用,但关于红外APD的工作相对较少。特别是在2微米以上的Geiger模式下没有基于GaAs的APD。该论文提供了在近红外(NIR)和中红外(MIR)范围内以线性和Geiger模式工作的APD的理论分析和实验探索。的波长。这项研究工作旨在解决当前最新的APD技术面临的挑战。在这项工作的理论部分,重点是开发新的理论方法,这些方法使我们能够建模,理解和表征以线性和盖革模式工作的雪崩光电二极管。目的是开发的方法有助于高性能和高速APD的设计和优化。这项研究工作的实验部分包括基于GaAs技术的新型中红外传感器的设计,制造和表征,该技术称为量子点雪崩光电二极管(QDAP)。 QDAP的主要动机是挖掘其在Geiger模式下工作的潜力,该潜力可用于单光子检测。此外,QDAP代表了第一款基于GaAs的APD,它在中红外波长范围内工作。

著录项

  • 作者

    Ramirez, David A.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号