首页> 外文学位 >Analysis of the 'bottom-up' fill during copper metallization of semiconductor interconnects.
【24h】

Analysis of the 'bottom-up' fill during copper metallization of semiconductor interconnects.

机译:半导体互连的铜金属化过程中“自下而上”填充的分析。

获取原文
获取原文并翻译 | 示例

摘要

Copper electrodeposition in the 'Dual Damascene' process for the metallization of semiconductor interconnects has recently become the mainstay for fabricating high-end microprocessors. The key to the successful implementation of this technology is an empirically formulated mixture of additives that inhibit deposition on the more accessible wafer surface and enhance plating at the bottom of the vias ('bottom-up' fill). Although the exact compositions of the commercial additives mixtures are proprietary, all systems incorporate chloride ions [Cl-], an inhibitor [e.g., polyethylene glycol---PEG], and an accelerator [e.g., bis(3-sulfopropyl) disulfide---SPS].; In this work, a time-dependent transport-adsorption-interaction model for the additives is developed in order to characterize their role in the 'bottom-up' fill. The model is based on analyzing the diffusional transport and adsorption of the additives, in conjunction with their interactions. All model parameters are determined experimentally by measuring the steady-state and transient copper deposition kinetics in the presence of additives. The effect of the local electrode area reduction during the via-fill on the additives distribution is incorporated in the via-fill simulations. The analysis indicates that a defect-free via-fill requires an additives mixture with special characteristics: an inhibiting additive (PEG) that is transport limited but adsorbs fast, and an accelerator (SPS) that diffuses rapidly but adsorbs slowly by displacing the PEG, thereby gradually counteracting the inhibition provided by the PEG. The significance of the additives transport-adsorption process during the 'bottom-up' fill of sub-100 nm vias is explained, and the effect of the process parameters, such as the additives composition and the applied potential, is analyzed.; Semi-analytical scaling analysis indicates that the additives transport-adsorption process occurs over a time-scale that is comparable to the via-fill duration in high aspect ratio features, thereby underscoring the importance of such transient effects in the via-fill of next generation sub-100 nm geometries. Analysis is also applied to vias with sloping sidewalls to characterize the effect of the via geometry on the additives distribution, and therefore, on the via-fill performance. Qualitative agreement with experimental observations is noted.; The 'microscopic' single via model is extended to characterize 'macroscopic' wafer-scale processes. The simulated wafer-scale current response is in qualitative agreement with experimental measurements.
机译:半导体互连金属化的“双大马士革”工艺中的铜电沉积最近已成为制造高端微处理器的主要手段。成功实施该技术的关键是根据经验配制的添加剂混合物,可以抑制沉积在较易接近的晶片表面上并增强通孔底部的镀层(“自下而上”填充)。尽管商业添加剂混合物的确切组成是专有的,但所有系统都包含氯离子[Cl-],抑制剂[例如聚乙二醇--- PEG]和促进剂[例如双(3-磺丙基)二硫化物- -SPS]。在这项工作中,为添加剂建立了一个与时间有关的运输-吸附-相互作用模型,以表征其在“自下而上”填充中的作用。该模型基于分析添加剂的扩散运输和吸附及其相互作用。所有模型参数均通过在添加剂存在下测量稳态和瞬态铜沉积动力学来实验确定。通孔填充模拟中包含了通孔填充期间局部电极面积减少对添加剂分布的影响。分析表明,要实现无缺陷的通孔填充,需要具有特殊特性的添加剂混合物:抑制性添加剂(PEG)的传输受限,但吸附速度很快;而促进剂(SPS)的扩散速度很快,但通过置换PEG吸附速度很慢,从而逐渐抵消了PEG提供的抑制作用。解释了在100纳米以下通孔“自下而上”填充过程中添加剂运输-吸附过程的重要性,并分析了工艺参数(例如添加剂组成和施加电势)的影响。半分析缩放分析表明,添加剂的传输吸附过程发生在与高纵横比特征中的通孔填充持续时间相当的时间范围内,从而强调了这种瞬态效应在下一代通孔填充中的重要性小于100 nm的几何形状。还对具有倾斜侧壁的通孔进行了分析,以表征通孔几何形状对添加剂分布以及通孔填充性能的影响。注意到与实验观察的定性一致性。扩展了“微观”单通孔模型,以表征“宏观”晶圆级工艺。模拟的晶圆级电流响应与实验测量在质量上吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号