首页> 外文学位 >Variation-aware and aging-aware design tools and techniques for nanometer-scale integrated circuits.
【24h】

Variation-aware and aging-aware design tools and techniques for nanometer-scale integrated circuits.

机译:纳米级集成电路的变化感知和老化感知设计工具和技术。

获取原文
获取原文并翻译 | 示例

摘要

Shrinking feature sizes in CMOS-based technology beyond the 45nm regime have given rise to increased levels of variation in digital circuits and architectures due to process, temperature, and aging effects. The fabrication process induces variations in the process parameters, causing differing levels of perturbation in the circuit delay in each manufactured part at the postsilicon stage. Moreover, after manufacturing, during the normal operation of a chip, new variations are injected due to various aging mechanisms, particularly Bias Temperature Instability (BTI). These effects cause long-term degradations in transistor performance, resulting in temporal delay degradations at the circuit level. The mechanism of BTI is exacerbated as transistor sizes reduce, and poses a growing threat to circuit reliability. All of these effects poses significant challenges at the presilicon design stage, which must ensure correct and reliable performance of a chip throughout its lifetime. Hence, techniques to mitigate the effects of spatial and temporal variations have become a vital part of the design flow for digital circuits and architectures. In this thesis, we develop robust techniques, in the form of design tools and techniques that operate at the circuit and architectural levels, which can be used to analyze, compensate and mitigate various sources of variation, including process and temperature variations and BTI-induced aging. One significant problem is related to the issue of performing presilicon timing analysis. State-of-the-art timing tools are built around the use of current source models (CSMs), which have proven to be fast and accurate in enabling the analysis of large circuits. As circuits become increasingly exposed to process and temperature variations, there is a strong need to augment these models to account for thermal effects and for the impact of adaptive body biasing, a compensatory technique that is used to overcome on-chip variations. However, a straightforward extension of CSMs to incorporate timing analysis at multiple body biases and temperatures results in unreasonably large characterization tables for each cell. The first contribution of this thesis is to propose a new approach to compactly capture body bias and temperature effects within a mainstream CSM framework. Our approach features a table reduction method for compaction of tables and a fast and novel waveform sensitivity method for timing evaluation under any body bias and temperature condition. The next part of the thesis addresses the problem of designing a new form of logic circuit, known as a variable latency unit. The basic idea, proposed in prior research, is an alternative to the conventional one-cycle implementation of circuits. Variable latency units (VLUs) allow a circuit to complete its operation in either one or multiple (typically, two) clock cycles, depending on the input provided to the circuit. This is facilitated through the use of hold logic, which holds the clock for an extra cycle when certain input patterns are applied. Our second contribution develops VLU-based BTI-aware designs, with a novel scheme for multioutput hold logic implementation for VLUs. A key observation is the identification and exploitation of specific supersetting patterns in the two-dimensional space of frequency and aging of the circuit. The multioutput hold logic scheme is used in conjunction with an adaptive body bias framework to achieve high performance. VLUs may experience functional incorrectness due to process variations. In our third contribution, we develop an efficient, combined presilicon-postsilicon statistical technique for variation aware VLU design. We develop a set of hold logics that ensure functional correctness of the circuit across all manufactured chips. This is achieved by exploiting spatial correlations to cluster such paths in the circuit, that get affected by process variations in very similar ways. Since such clusters are quite few in number, the corresponding set of hold logics is also small. Our final contribution presents a novel scheme for saving architectural power by mitigating BTI in digital circuits, inspired by the notion of human circadian rhythms. The method works in two alternating phases. In the first, the compute phase, the circuit is ``awake'' and active, operating briskly at a greater-than-nominal supply voltage, which causes tasks to complete more quickly. In the second, the idle phase, the circuit is power-gated and ``put to sleep,'' enabling BTI recovery. Since the wakeful stage works at an elevated supply voltage, it results in greater aging than operation at the nominal supply voltage, but the sleep state involves a recovery that more than compensates for this differential. At about the same performance, this approach results in appreciable BTI mitigation.
机译:由于工艺,温度和老化效应,基于CMOS的技术中的特征尺寸缩小到45nm以上,导致数字电路和体系结构的变化程度不断提高。制造过程引起过程参数的变化,从而在后硅阶段在每个制造零件中引起电路延迟的不同程度的扰动。此外,在制造之后,在芯片的正常操作期间,由于各种老化机制,特别是偏置温度不稳定性(BTI),注入了新的变化。这些影响导致晶体管性能的长期下降,从而导致电路级的时间延迟下降。随着晶体管尺寸的减小,BTI的机制更加恶化,并且对电路可靠性构成越来越大的威胁。所有这些影响都在预硅设计阶段提出了严峻的挑战,必须在芯片的整个生命周期内确保其性能正确可靠。因此,减轻空间和时间变化影响的技术已成为数字电路和体系结构设计流程的重要组成部分。在本文中,我们以设计工具和在电路和架构级别上运行的技术的形式开发了可靠的技术,这些技术可用于分析,补偿和缓解各种变化源,包括过程和温度变化以及BTI引起的变化。老化。一个重要的问题与执行硅前时序分析的问题有关。先进的计时工具是基于电流源模型(CSM)的使用而构建的,事实证明,该模型能够快速,准确地分析大型电路。随着电路越来越多地受到工艺和温度变化的影响,强烈需要扩展这些模型,以解决热效应和自适应体偏置的影响,这是一种用于克服芯片上变化的补偿技术。但是,CSM的直接扩展是将多个身体偏差和温度下的时序分析合并在一起,从而导致每个电池的特征表过大。本文的主要贡献是提出了一种在主流CSM框架内紧凑地捕获体偏和温度效应的新方法。我们的方法具有用于表压缩的表缩减方法和用于在任何身体偏置和温度条件下进行时序评估的快速新颖的波形灵敏度方法。论文的下一部分解决了设计一种新形式的逻辑电路的问题,该逻辑电路被称为可变等待时间单元。在先前的研究中提出的基本思想是对电路的常规单周期实现的替代。可变等待时间单元(VLU)允许电路在一个或多个(通常是两个)时钟周期内完成其操作,具体取决于提供给电路的输入。这通过使用保持逻辑来简化,当应用某些输入模式时,该逻辑将时钟保持一个额外的周期。我们的第二个贡献是开发了基于VLU的BTI感知设计,并为VLU提供了一种用于多输出保持逻辑实现的新颖方案。一个关键的观察是在频率和电路老化的二维空间中特定超载模式的识别和利用。多输出保持逻辑方案与自适应主体偏置框架结合使用以实现高性能。由于过程变化,VLU可能会遇到功能不正确的情况。在我们的第三项贡献中,我们开发了一种高效的,组合的硅前-硅后统计技术,用于感知变化的VLU设计。我们开发了一组保持逻辑,以确保所有制造的芯片上电路的功能正确性。这是通过利用空间相关性对电路中的此类路径进行聚类来实现的,这些路径会以非常相似的方式受到工艺变化的影响。由于此类簇的数量很少,因此相应的保持逻辑集也很小。我们的最后贡献是提出了一种新颖的方案,该方案通过减轻人类昼夜节律的观念,通过减轻数字电路中的BTI来节省建筑能耗。该方法分为两个交替阶段。在第一阶段,即计算阶段,电路处于``清醒''状态且处于活动状态,并在高于标称电源电压的条件下快速运行,这使得任务可以更快地完成。在第二个空闲阶段,电路被加电并``进入睡眠''状态,从而实现BTI恢复。由于唤醒阶段在升高的电源电压下工作,因此导致老化时间要比在标称电源电压下工作的时间更长,但是休眠状态所涉及的恢复远远超过了对这种差分的补偿。在大致相同的性能下,此方法可显着降低BTI。

著录项

  • 作者

    Gupta, Saket.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Electronics and Electrical.;Engineering Computer.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号