首页> 外文学位 >Modeling the self-assembly of ordered nanoporous materials.
【24h】

Modeling the self-assembly of ordered nanoporous materials.

机译:模拟有序纳米多孔材料的自组装。

获取原文
获取原文并翻译 | 示例

摘要

Porous materials have long been a research interest due to their practical importance in traditional chemical industries such as catalysis and separation processes. The successful synthesis of porous materials requires further understanding of the fundamental physics that govern the formation of these materials. In this thesis, we apply molecular modeling methods and develop novel models to study the formation mechanism of ordered porous materials. The improved understanding provides an opportunity to rational control pore size, pore shape, surface reactivity and may lead to new design of tailor-made materials.;To attain detailed structural evolution of silicate materials, an atomistic model with explicitly representation of silicon and oxygen atoms is developed. Our model is based on rigid tetrahedra (representing SiO4) occupying the sites of a body centered cubic (bcc) lattice. The model serves as the base model to study the formation of silica materials. We first carried out Monte Carlo simulations to describe the polymerization process of silica without template molecules starting from a solution of silicic acid in water at pH 2. We predicted Qn evolutions during silica polymerization and good agreement was found compared with experimental data, where Qn is the fraction of Si atoms with n bridging oxygens. The model captures the basic kinetics of silica polymerization and provides structural evolution information.;Next we generalize the application of this atomic lattice model to materials with tetrahedral (T) and bridging (B) atoms and apply parallel tempering Monte Carlo methods to search for ground states. We show that the atomic lattice model can be applied to silica and related materials with a rich variety of structures including known chalcogenides, zeolite analogs, and layered materials. We find that whereas canonical Monte Carlo simulations of the model consistently produce the amorphous solids studied in our previous work, parallel tempering Monte Carlo gives rise to ordered nanoporous solids. The utility of parallel tempering highlights the existence of barriers between amorphous and crystalline phases of our model.;The role of template molecules during synthesis of ordered mesoporous materials was investigated. Implemented surfactant lattice model of Larson, together with atomic tetrahedral model for silica, we successfully modeled the formation of surfactant-templated mesoporous silica (MCM-41), with explicit representation of silicic acid condensation and surfactant self-assembly. Lamellar and hexagonal mesophases form spontaneously at different synthesis conditions, consistent with published experimental observations. Under conditions where silica polymerization is negligible, reversible transformation between hexagonal and lamellar phases were observed by changing synthesis temperatures. Upon long-time simulation that allows condensation of silanol groups, the inorganic phases of mesoporous structures were found with thicker walls that are amorphous and lack of crystallinity. Compared with bulk amorphous silica, the wall-domain of mesoporous silicas are less ordered withlarger fractions of three- and four-membered rings and wider ring-size distributions. It is the first molecular simulation study of explicit representations of both silicic acid condensation and surfactant self-assembly.
机译:由于多孔材料在诸如催化和分离过程等传统化学工业中的实际重要性,长期以来一直引起研究兴趣。成功地合成多孔材料需要进一步了解控制这些材料形成的基本物理原理。在本文中,我们应用分子建模方法并开发新颖的模型来研究有序多孔材料的形成机理。更好的理解为合理控制孔尺寸,孔形状,表面反应性提供了机会,并可能导致定制材料的新设计。为了获得硅酸盐材料的详细结构演变,一个原子模型可以明确表示硅和氧原子被开发。我们的模型基于刚性四面体(代表SiO4)占据体心立方(bcc)晶格的位置。该模型是研究二氧化硅材料形成的基础模型。我们首先进行了蒙特卡洛模拟,描述了没有模板分子的二氧化硅的聚合过程,该过程是从pH值为2的硅酸水溶液开始的。我们预测了二氧化硅聚合过程中的Qn演化,与实验数据相比发现了良好的一致性,其中Qn为具有n个桥连氧的Si原子分数。该模型捕获了二氧化硅聚合反应的基本动力学,并提供了结构演化信息。接下来,我们将该原子晶格模型推广到具有四面体(T)和桥联(B)原子的材料中,并应用平行回火的蒙特卡洛方法搜索地面状态。我们证明了原子晶格模型可以应用于具有各种结构的二氧化硅和相关材料,包括已知的硫属化物,沸石类似物和层状材料。我们发现,虽然模型的规范蒙特卡罗模拟始终产生我们先前工作中研究的非晶态固体,但平行回火蒙特卡洛却产生了有序的纳米多孔固体。平行回火的实用性凸显了我们模型的非晶相和结晶相之间存在障碍。;研究了模板分子在有序介孔材料合成中的作用。实施Larson的表面活性剂晶格模型,再结合二氧化硅的原子四面体模型,我们成功地模拟了表面活性剂模板的介孔二氧化硅(MCM-41)的形成,并明确表示了硅酸缩合和表面活性剂的自组装。层状和六方中间相在不同的合成条件下自发形成,与已发表的实验观察结果一致。在二氧化硅聚合作用可忽略的条件下,通过改变合成温度观察到六方相和层状相之间可逆的转变。经过长时间的模拟,发现硅烷醇基团可以缩合,发现介孔结构的无机相壁较厚,该壁为非晶态且缺乏结晶性。与本体无定形二氧化硅相比,介孔二氧化硅的壁域排列较不规则,三元和四元环的比例较大,环尺寸分布较宽。这是对硅酸缩合和表面活性剂自组装的明确表示形式的首次分子模拟研究。

著录项

  • 作者

    Jin, Lin.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Chemical.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号