首页> 外文学位 >Tuning of electrical properties in indium aluminum nitride/gallium nitride HFETs and barium strontium titanate/YIG phase shifters.
【24h】

Tuning of electrical properties in indium aluminum nitride/gallium nitride HFETs and barium strontium titanate/YIG phase shifters.

机译:氮化铟铝/氮化镓HFET和钛酸钡锶/ YIG相移器中电性能的调整。

获取原文
获取原文并翻译 | 示例

摘要

Engineers know well from an early point in their training the trials and tribulations of having to make design tradeoffs in order to optimize one performance parameter for another. Discovering tradeoff conditions that result in the elimination of a loss associated with the enhancement of some other parameter (an improvement over a typical tradeoff), therefore, ushers in a new paradigm of design in which the constraints which are typical of the task at hand are alleviated. We call such a design paradigm "tuning" as opposed to "trading off", and this is the central theme of this work. We investigate two types of microwave electronic devices, namely GaN-based heterostructure field effect transistors (HFETs) and tunable ferroelectric-ferrite-based microwave phase shifters. The "tuning" associated with these types of devices arises from the notion of an optimal 2DEG density, capable of achieving higher performance in terms of electron velocity and enhanced reliability in the case of the HFET, and the coupling of ferroelectric and ferrite materials in tunable microwave phase shifters, capable of achieving high differential phase shifts while at the same time mitigating the losses associated with impedance mismatching which typically arise when the phase is tuned.;Promises and problems associated with HFET devices based on the intriguing InAlN/GaN material system will be described. We focus on the fundamental problem associated with the induction of the large density of carriers at the interface, namely the disintegration of an excess of longitudinal optical phonons (hot phonons) in the channel. We use microwave measurements in conjunction with stress tests to evidence the existence of an optimal 2DEG density wherein the hot phonon effect can be "tuned," which allows for enhanced high frequency performance as well as device reliability.;Next, we focus on the design, fabrication, and measurement of tunable phase shifters consisting of thin films of BaxSr1-xTiO 3 (BST), which has the advantage of having high dielectric tunability as well as relatively low microwave loss. We discuss the design, fabrication, and measurement of a simple coplanar waveguide (CPW) type of phase shifter as well as a more complicated "hybrid" phase shifter consisting of a ferrite (YIG) in addition to BST. The use of such a bilayer allows one to "tune" the impedance of the phase shifters independently of the phase velocity through careful selection of the DC biasing magnetic fields, or alternatively through the use of an additional piezoelectric layer, bonded to YIG whose permeability can then be tuned through magnetostriction.
机译:工程师从培训的早期就知道必须进行权衡以优化另一个性能参数的试验和磨难。因此,发现折衷条件可以消除与其他一些参数的增强相关的损失(对典型折衷的改进),从而催生了一种新的设计范式,其中手头典型任务的约束是减轻。我们称这种设计范式为“调优”,而不是“交易”,这是这项工作的中心主题。我们研究了两种类型的微波电子设备,即基于GaN的异质结构场效应晶体管(HFET)和基于可调谐铁电-铁氧体的微波移相器。与这些类型的设备相关的“调谐”源于最佳2DEG密度的概念,在HFET的情况下,它能够在电子速度和增强的可靠性方面实现更高的性能,并且在可调性中耦合铁电和铁氧体材料微波移相器,能够实现高差分相移,同时减轻与阻抗失配相关的损耗,该损耗通常在调整相位时出现。;与基于有趣的InAlN / GaN材料系统的HFET器件相关的问题和问题将被描述。我们关注与在界面处感应大载流子有关的基本问题,即通道中多余的纵向光学声子(热声子)的分解。我们将微波测量与压力测试结合使用,以证明存在最佳2DEG密度,在该密度中可以“调节”热声子效应,从而提高高频性能以及器件可靠性。接下来,我们重点研究设计,由BaxSr1-xTiO 3(BST)薄膜组成的可调移相器的制造和测量,其优点是具有高介电可调性和相对较低的微波损耗。我们讨论了简单的共面波导(CPW)型移相器以及除BST外还包括铁氧体(YIG)的更复杂的“混合”移相器的设计,制造和测量。使用这种双层可以通过仔细选择DC偏置磁场,或者通过使用附加到YIG的压电层(其磁导率可以调节)来独立于相速度来“调谐”移相器的阻抗,而与相速度无关。然后通过磁致伸缩进行调谐。

著录项

  • 作者

    Leach, Jacob H.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号