首页> 外文学位 >FPGA-Based Hardware Implementation of Image Processing Algorithms for Real-Time Vehicle Detection Applications.
【24h】

FPGA-Based Hardware Implementation of Image Processing Algorithms for Real-Time Vehicle Detection Applications.

机译:用于实时车辆检测应用的图像处理算法的基于FPGA的硬件实现。

获取原文
获取原文并翻译 | 示例

摘要

It is well known that vehicle tracking processes are very computationally intensive. Traditionally, vehicle tracking algorithms have been implemented using software approaches. The software approaches have a large computational delay, which causes low frame rate vehicle tracking. However, real-time vehicle tracking is highly desirable to improve not only tracking accuracy but also response time, in some ITS (Intelligent Transportation System) applications such as security monitoring and hazard warning. For this purpose, this thesis makes an attempt to design a hardware based system for real-time vehicle detection, which is typically required in the complete tracking system. The vehicle detection systems capture pictures using a camera in real-time and then we apply several image processing algorithms, such as Fixed Block Size Motion Estimation (FBSME), Reconfigurable Block Size Motion Estimation (RBSME), Variable Block Size Motion Estimation (VBSME) and Mixtures of Gaussian, to process these images in real-time for vehicle detection.;We first propose the Very-Large-Scale Integration (VLSI) implementation for RBSME algorithm, which supports arbitrary block size motion estimation. Experiment results show that the proposed architecture achieves the flexibility of adjustable block size at the expense of only 5% hardware overhead compared to the traditional design.;We then propose a low-power VLSI implementation for the VBSME algorithm, which employs a fast full-search block matching algorithm to reduce power consumption, while preserving the optimal solutions. The fast full-search algorithm is based on the comparison of the current minimum Sum of Absolute Difference (SAD) to a conservative lower bound so that unnecessary SAD calculations can be eliminated. We first experimentally decide on the specific conservative lower bound and then implement the fast full-search algorithm in Field-Programmable Gate Array (FPGA). To the best of our knowledge, this is the first time that a fast full-search block matching algorithm is explored to reduce power consumption in the context of VBSME, and designed in hardware. Experiment results show that the proposed hardware implementation can save power consumption by 45% compared to conventional VBSME designs based on the non-fast full-search algorithms.;At last, we propose an System-on-a-Chip (SoC) architecture for an Mixture of Gaussian (MoG) based image segmentation algorithm. The MoG algorithm for video segmentation application is computational intensive. To meet real-time requirement of high frame rate high resolution video segmentation tasks, we present a hardware implementation of the MoG algorithm. Moreover, we integrated the hardware IP into an SoC architecture, so that some key parameters, such as learning rate and threshold, can be configured on-line, which makes the system extremely flexible to adapt to different environments. The proposed system has been implemented and tested on Xilinx XtremeDSP Video Starter Kit Spartan-3ADSP 3400A Edition. Experiment results show that under a clock frequency of 25MHz, this design meets the real-time requirement for Video Graphics Array (VGA) resolution (640 × 480) at 30 frame-per-second (fps).
机译:众所周知,车辆跟踪过程的计算量很大。传统上,车辆跟踪算法是使用软件方法实现的。该软件方法具有较大的计算延迟,这导致低帧率车辆跟踪。但是,在某些ITS(智能交通系统)应用程序(例如安全监控和危险警告)中,不仅需要提高跟踪精度,而且还需要提高响应时间,因此非常需要实时车辆跟踪。为此,本论文试图设计一种用于实时车辆检测的基于硬件的系统,这在完整的跟踪系统中通常是必需的。车辆检测系统使用相机实时捕获图片,然后我们应用几种图像处理算法,例如固定块大小运动估计(FBSME),可重新配置块大小运动估计(RBSME),可变块大小运动估计(VBSME)我们首先为RBSME算法提出超大规模集成(VLSI)实现,该算法支持任意块大小的运动估计。实验结果表明,与传统设计相比,该架构具有可调整块大小的灵活性,而硬件开销仅为5%。然后,我们为VBSME算法提出了一种低功耗VLSI实现,该算法采用了快速的全搜索块匹配算法可减少功耗,同时保留最佳解决方案。快速的全搜索算法基于当前最小绝对差总和(SAD)与保守的下限的比较,从而可以消除不必要的SAD计算。我们首先通过实验确定特定的保守下限,然后在现场可编程门阵列(FPGA)中实现快速的全搜索算法。据我们所知,这是第一次在硬件上设计出一种快速的全搜索块匹配算法,以降低VBSME的功耗。实验结果表明,与基于非快速全搜索算法的常规VBSME设计相比,所提出的硬件实现方案可以节省功耗达45%。最后,我们提出了一种用于单芯片系统(SoC)的体系结构基于高斯混合(MoG)的图像分割算法。用于视频分割的MoG算法的计算量很大。为了满足高帧率高分辨率视频分割任务的实时要求,我们提出了MoG算法的硬件实现。此外,我们将硬件IP集成到SoC架构中,以便可以在线配置一些关键参数,例如学习率和阈值,这使系统非常灵活,可以适应不同的环境。拟议的系统已经在Xilinx XtremeDSP Video Starter Kit Spartan-3ADSP 3400A版上实现和测试。实验结果表明,在25MHz的时钟频率下,该设计满足了每秒30帧(fps)的视频图形阵列(VGA)分辨率(640×480)的实时要求。

著录项

  • 作者

    Li, Peng.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 M.S.E.C.E.
  • 年度 2012
  • 页码 57 p.
  • 总页数 57
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号