首页> 外文学位 >Axel Rover Tethered Dynamics and Motion Planning on Extreme Planetary Terrain.
【24h】

Axel Rover Tethered Dynamics and Motion Planning on Extreme Planetary Terrain.

机译:极限行星地形上的Axel Rover系留动力学和运动计划。

获取原文
获取原文并翻译 | 示例

摘要

Some of the most appealing science targets for future exploration missions in our solar system lie in terrains that are inaccessible to state-of-the-art robotic rovers such as NASA's Opportunity, thereby precluding in situ analysis of these rich opportunities. Examples of potential high-yield science areas on Mars include young gullies on sloped terrains, exposed layers of bedrock in the Victoria Crater, sources of methane gas near Martian volcanic ranges, and stepped delta formations in heavily cratered regions. In addition, a recently discovered cryovolcano on Titan and frozen water near the south pole of our own Moon could provide a wealth of knowledge to any robotic explorer capable of accessing these regions.;To address the challenge of extreme terrain exploration, this dissertation presents the Axel rover, a two-wheeled tethered robot capable of rappelling down steep slopes and traversing rocky terrain. Axel is part of a family of reconfigurable rovers, which, when docked, form a four-wheeled vehicle nicknamed DuAxel. DuAxel provides untethered mobility to regions of extreme terrain and serves as an anchor support for a single Axel when it undocks and rappels into low-ground.;Axel's performance on extreme terrain is primarily governed by three key system components: wheel design, tether control, and intelligent planning around obstacles. Investigations in wheel design and optimizing for extreme terrain resulted in the development of grouser wheels. Experiments demonstrated that these grouser wheels were very effective at surmounting obstacles, climbing rocks up to 90% of the wheel diameter. Terramechanics models supported by experiments showed that these wheels would not sink excessively or become trapped in deformable terrain.;Predicting tether forces in different configurations is also essential to the rover's mobility. Providing power, communication, and mobility forces, the tether is Axel's lifeline while it rappels steep slopes, and a cut, abraded, or ruptured tether would result in an untimely end to the rover's mission. Understanding tether forces are therefore paramount, and this thesis both models and measures tension forces to predict and avoid high-stress scenarios.;Finally, incorporating autonomy into Axel is a unique challenge due to the complications that arise during tether management. Without intelligent planning, rappelling systems can easily become entangled around obstacles and suffer catastrophic failures. This motivates the development of a novel tethered planning algorithm, presented in this thesis, which is unique for rappelling systems.;Recent field experiments in natural extreme terrains on Earth demonstrate the Axel rover's potential as a candidate for future space operations. Both DuAxel and its rappelling counterpart are rigorously tested on a 20 meter escarpment and in the Arizona desert. Through analysis and experiments, this thesis provides the framework for a new generation of robotic explorers capable of accessing extreme planetary regions and potentially providing clues for life beyond Earth.
机译:在我们的太阳系中,未来探索任务中最吸引人的科学目标是,诸如NASA的“机遇”等最先进的机器人漫游车无法进入的地形,从而排除了对这些丰富机遇的就地分析。火星上潜在的高产科学区的例子包括倾斜地形上的年轻沟壑,维多利亚陨石坑中基岩的裸露层,火星火山山脉附近的甲烷气源以及火山口严重的地区的阶跃三角洲地层。此外,最近在土卫六上发现的冰晶和我们月球南极附近的冰冻水可以为任何能够进入这些区域的机器人探索者提供丰富的知识。为解决极端地形探索的挑战,本论文提出了Axel流浪者,这是一款两轮系留机器人,能够在陡峭的斜坡上速降并穿越岩石地形。 Axel是可重组漫游车系列的一部分,该漫游车停靠后形成绰号为DuAxel的四轮车辆。 DuAxel可为极端地形区域提供不受限制的机动性,并在单个Axel撤退并坠入低地时充当锚固支撑。; Axel在极端地形上的性能主要受三个关键系统组件支配:车轮设计,系绳控制,围绕障碍物进行智能规划。对车轮设计的研究以及针对极端地形的优化研究导致了松紧轮的发展。实验表明,这些履带轮在克服障碍物方面非常有效,可以将岩石攀升至轮直径的90%。实验支持的地形力学模型表明,这些轮子不会过度下沉或陷于可变形的地形中。预测不同形态的系链力对于流动站的机动性也至关重要。提供动力,通讯和机动性的系绳是Axel的命脉,而它在陡峭的山坡上速降,并且系绳被割伤,磨损或破裂将导致漫游车的任务不合时宜地终止。因此,了解系绳力是至关重要的,因此本论文既可以对张力进行建模和测量,以预测和避免高应力情况。最后,由于在系绳管理过程中会出现复杂性,将自治性纳入Axel是一个独特的挑战。如果没有明智的计划,速降系统很容易缠绕在障碍物周围,并遭受灾难性故障。这激发了本文提出的新颖的系绳计划算法的开发,该算法对于速降系统是独一无二的。;最近在地球上的自然极端地形上进行的野外实验证明了Axel漫游者作为未来太空作战候选者的潜力。 DuAxel及其速降产品均在20米高的悬崖和亚利桑那州的沙漠中经过严格测试。通过分析和实验,本论文为新一代机器人探索器提供了框架,该机器人能够进入极端行星区域并可能为地球以外的生命提供线索。

著录项

  • 作者

    Abad-Manterola, Pablo.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号