首页> 外文学位 >Deformation mechanisms in nanoscale single crystalline electroplated copper pillars.
【24h】

Deformation mechanisms in nanoscale single crystalline electroplated copper pillars.

机译:纳米级单晶电镀铜柱的变形机理。

获取原文
获取原文并翻译 | 示例

摘要

Scientific research in nanotechnology has enabled advances in a diverse range of applications, such as: electronics, chemical sensing, and cancer treatment. In order to transition these nanotechnology-driven innovations out of the laboratory and into real-world applications, the resilience and mechanical reliability of nanoscale structures must be well understood in order to preserve functionality under real-world operating environments. Understanding the mechanical properties of nanoscale materials is especially important because several authors have shown that single crystalline metal pillars produced through focused-ion-beam milling have unique properties when the pillar diameter, D, approaches nanotechnology-relevant dimensions. The strength, sigma, of these pillars is size-dependent and is well described through a power-law relation showing that smaller is stronger: sigma∝D-n , where n is the exponent and is found to be 0.5≤n≤1.0 in face-centered-cubic metals. In this work, the fundamental deformation mechanisms governing the size-dependent mechanical properties are investigated through uniaxial compression and tension tests of electroplated single crystalline copper pillars with diameters between 75 nm and 1000 nm. At larger pillar diameters, D >125 nm, these copper pillars are shown to obey a similar size-dependent regime, demonstrating that the "smaller is stronger" phenomenon is a function of the pillar microstructure, as opposed to the fabrication route. Furthermore, the dominant dislocation mechanism in this size-dependent regime is shown to be the result of single-arm, or spiral, sources. At smaller pillar diameters, D≤125 nm, a strain-rate-dependent mechanism transition is observed through both the size-strength relation and also quantitative, experimental measures of the activation volume. This new deformation regime is characterized by a size-independent strength and is governed by surface dislocation nucleation, a thermally activated mechanism sensitive to both temperature and strain-rate. Classical, analytical models of surface source-nucleation are shown to be insufficient to describe either the quantitative strength or the nucleation site preference. As a result, a combination of atomistic chain-of-states simulations and semi-analytical continuum models are developed in order to achieve a realistic, intuitive understanding of surface nucleation processes.
机译:纳米技术的科学研究已推动了多种应用领域的进步,例如:电子,化学传感和癌症治疗。为了将这些由纳米技术驱动的创新从实验室转移到实际应用中,必须充分了解纳米级结构的弹性和机械可靠性,以便在实际操作环境下保持功能。理解纳米级材料的机械性能尤为重要,因为几位作者已经表明,当柱直径D接近与纳米技术相关的尺寸时,通过聚焦离子束铣削生产的单晶金属柱具有独特的性能。这些支柱的强度sigma与尺寸有关,并且通过幂律关系得到了很好的描述,幂律关系显示出较小的强度更强:sigmanDn,其中n是指数,在面中为0.5≤n≤1.0。居中立方金属。在这项工作中,通过对直径在75 nm至1000 nm之间的电镀单晶铜柱进行单轴压缩和拉伸测试,研究了控制尺寸相关机械性能的基本变形机理。在较大的直径D> 125 nm的柱上,这些铜柱显示出遵循相似的尺寸依赖性方案,这表明“较小越强”现象是柱微结构的函数,与制造工艺相反。此外,在这种与尺寸有关的状态下,主要的位错机制被证明是单臂或螺旋源的结果。在较小的柱直径D≤125nm时,通过尺寸-强度关系以及激活体积的定量实验测量,都可以观察到应变率相关的机理转变。这种新的变形方式的特征在于尺寸无关的强度,并受表面位错成核作用的控制,这是一种对温度和应变率均敏感的热激活机制。表面源成核的经典分析模型显示不足以描述定量强度或成核位置偏好。结果,开发了原子状态链模拟和半分析连续体模型的组合,以实现对表面成核过程的现实,直观的理解。

著录项

  • 作者

    Jennings, Andrew T.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号