首页> 外文会议>Deformation mechanisms, microstructure evolution and mechanical properties of nanoscale materials >Deformation Mechanisms, Microstructure and Mechanical Properties of Nanoscale Crystalline and Noncrystalline Materials in Different Temperature Ranges
【24h】

Deformation Mechanisms, Microstructure and Mechanical Properties of Nanoscale Crystalline and Noncrystalline Materials in Different Temperature Ranges

机译:纳米晶和非晶态材料在不同温度范围内的变形机理,微观结构和力学性能

获取原文
获取原文并翻译 | 示例

摘要

A review of the influence of nanoscale structural elements on the mechanical properties of crystals, quasicrystals, and metallic glasses (MG) is presented. Temperature ranges of cold, warm, and hot deformation are distinguished for crystalline materials, but a nanocrystalline (NC) structure may be formed by severe plastic deformation in the temperature ranges of warm and hot deformation. The plasticity characteristic obtained by indentation can be used for the characterization of low-ductile NC materials. The main features of the plastic deformation mechanisms of NC materials, including results obtained by molecular dynamic simulation, are considered. For MO, the following two problems are discussed: the comparison of the yield stresses for NC and MG and the possibility of strengthening of MG by disperse crystalline nanoscale particles. Quasicrystals with nanosize grains, which are also called nanoquasicrystals (NQC), form a separate class of materials. The mechanical properties of NQC and crystalline materials strengthened by NQC particles are analyzed. Dispersion hardening of metals by NC particles was the first application of nanoscale structures for structural materials. New possibilities of such strengthening are considered.
机译:综述了纳米级结构元素对晶体,准晶体和金属玻璃(MG)的机械性能的影响。对于晶体材料,冷,热和热变形的温度范围是不同的,但是在热和热变形的温度范围内,严重的塑性变形可能会形成纳米晶(NC)结构。通过压痕获得的可塑性特性可用于表征低延展性NC材料。考虑了数控材料塑性变形机理的主要特征,包括通过分子动力学模拟获得的结果。对于MO,讨论了以下两个问题:NC和MG的屈服应力的比较以及分散结晶纳米级颗粒增强MG的可能性。具有纳米级晶粒的准晶体(也称为纳米准晶体(NQC))形成了另一类材料。分析了NQC和由NQC颗粒增强的结晶材料的力学性能。通过NC粒子对金属进行分散硬化是纳米级结构用于结构材料的首次应用。考虑了这种加强的新可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号