首页> 外文学位 >Microscopy studies of non-linear optical materials.
【24h】

Microscopy studies of non-linear optical materials.

机译:非线性光学材料的显微镜研究。

获取原文
获取原文并翻译 | 示例

摘要

A central challenge in the development of organic non-linear optical materials is the translation of molecules demonstrating appreciable hyperpolarizability into materials possessing substantial electro-optical activity. An important step in this translation is developing strategies to improve chromophore ordering in the material. In chromophore-polymer composite materials, ordering is induced through the interaction of the chromophore dipole moment with an external electric field, a process referred to as "poling". To provide insight into the molecular details of the poling process under conditions representative of device construction, the rotational dynamics of single DCM (4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran) molecules in poly(methyl acrylate) (PMA) at T = Tg + 11° C are investigated using single-molecule confocal fluorescence microscopy. The rotational dynamics of DCM are found to be weakly perturbed in the presence of a 50 V/mum electric field, typical of the field strengths employed in device construction. In addition to the single-molecule studies, second harmonic generation (SHG) and two-photon fluorescence (TPF) microscopy are used to explore bulk reorientation dynamics operative in the poling process for DCM and TP-DBA1 (4-[2-(5-pyrrolidine-1-yl-thiophene-2-yl)-vinyl]-benzaldehyde) in PMA (Tg = 9° C), poly(vinyl acetate) (PVA, Tg = 30° C), and poly(methyl methacrylate) (PMMA, Tg = 86° C). SHG provides a measure of chi (2), which is dependent on the extent of chromophore ordering. The polymer hosts were chosen such that ambient temperature is above, below, or well below Tg. These bulk studies demonstrate that the rotational mobility of the chromophore is strongly dependent on temperature relative to the Tg of the polymer host. The relevance of these findings with respect to current models of the poling process is discussed.
机译:有机非线性光学材料开发中的一个主要挑战是将具有明显超极化性的分子转变为具有实质性电光活性的材料。该翻译过程中的重要一步是开发提高材料中发色团有序性的策略。在生色团-聚合物复合材料中,通过生色团偶极矩与外部电场的相互作用来诱导有序化,该过程称为“极化”。为了提供对代表器件构造的条件下极化过程的分子细节的了解,单个DCM(4-(二氰基亚甲基)-2-甲基-6-(4-二甲基氨基苯乙烯)-4 H-吡喃)分子的旋转动力学使用单分子共聚焦荧光显微镜研究了T = Tg + 11°C时的聚(丙烯酸甲酯)(PMA)。发现在存在50 V / um电场的情况下,DCM的旋转动力学受到微扰,这是器件构造中典型的场强。除单分子研究外,二次谐波生成(SHG)和双光子荧光(TPF)显微镜用于探索在DCM和TP-DBA1极化过程中有效的本体重取向动力学(4- [2-(5 -吡咯烷-1-基-噻吩-2-基-乙烯基]-苯甲醛)在TMA中(Tg = 9°C),聚乙酸乙烯酯(PVA,Tg = 30°C)和聚(甲基丙烯酸甲酯) (PMMA,Tg = 86℃)。 SHG提供了chi(2)的度量,它取决于生色团有序的程度。选择聚合物主体以使环境温度高于,低于或远低于Tg。这些大量研究表明,生色团的旋转迁移率强烈依赖于相对于聚合物主体的Tg的温度。讨论了这些发现与当前极化过程模型的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号