首页> 外文学位 >Chemical Vapor Deposition of Thin Film Materials for Copper Interconnects in Microelectronics.
【24h】

Chemical Vapor Deposition of Thin Film Materials for Copper Interconnects in Microelectronics.

机译:微电子学中用于铜互连的薄膜材料的化学气相沉积。

获取原文
获取原文并翻译 | 示例

摘要

The packing density of microelectronic devices has increased exponentially over the past four decades. Continuous enhancements in device performance and functionality have been achieved by the introduction of new materials and fabrication techniques. This thesis summarizes the thin film materials and metallization processes by chemical vapor deposition (CVD) developed during my graduate study with Professor Gordon at Harvard University. These materials and processes have the potential to build future generations of microelectronic devices with higher speeds and longer lifetimes.;Manganese Silicate Diffusion Barrier: Highly conformal, amorphous and insulating manganese silicate (MnSixOy) layers are formed along the walls of trenches in interconnects by CVD using a manganese amidinate precursor vapor that reacts with the surfaces of the insulators. These MnSixOy layers are excellent barriers to diffusion of copper, oxygen and water.;Manganese Capping Layer: A selective CVD manganese capping process strengthens the interface between copper and dielectric insulators to improve the electromigration reliability of the interconnects. High selectivity is achieved by deactivating the insulator surfaces using vapors containing reactive methylsilyl groups. Manganese at the Cu/insulator interface greatly increases the strength of adhesion between the copper and the insulator.;Bottom-up Filling of Copper and Alloy in Narrow Features: Narrow trenches, with widths narrow than 30 nm and aspect ratios up to 9:1, can be filled with copper or copper-manganese alloy in a bottom-up fashion using a surfactant-catalyzed CVD process. A conformal manganese nitride (Mn 4N) layer serves as a diffusion barrier and adhesion layer. Iodine atoms chemisorb on the Mn4N layer and are then released to act as a catalytic surfactant on the surface of the growing copper layer to achieve void-free, bottom-up filling. Upon post-annealing, manganese in the alloy diffuses out from the copper and forms a self-aligned barrier in the surface of the insulator.;Conformal Seed Layers for Plating Through-Silicon Vias: Through-silicon vias (TSV) will speed up interconnections between chips. Conformal, smooth and continuous seed layers in TSV holes with aspect ratios greater than 25:1 can be prepared using vapor deposition techniques. Mn4N is deposited conformally on the silica surface by CVD to provide strong adhesion at Cu/insulator interface. Conformal copper or Cu-Mn alloy seed layers are then deposited by an iodine-catalyzed direct-liquid-injection (DLI) CVD process.
机译:在过去的四十年中,微电子设备的包装密度呈指数增长。通过引入新材料和制造技术,可以实现设备性能和功能的不断增强。本文总结了我在哈佛大学戈登教授研究生学习期间开发的通过化学气相沉积(CVD)的薄膜材料和金属化工艺。这些材料和工艺具有建造更高速度和更长寿命的下一代微电子器件的潜力。硅酸锰扩散阻挡层:通过CVD沿着互连中的沟槽壁形成高度共形,无定形和绝缘的硅酸锰(MnSixOy)层使用与绝缘子表面反应的a化锰前驱体蒸气。这些MnSixOy层是阻止铜,氧和水扩散的极佳屏障。锰覆盖层:选择性CVD锰覆盖工艺可增强铜和电介质绝缘体之间的界面,从而提高互连件的电迁移可靠性。通过使用含有反应性甲基甲硅烷基的蒸气使绝缘体表面失活,可以实现高选择性。铜/绝缘子界面处的锰极大地提高了铜和绝缘子之间的粘合强度。;铜和合金的自下而上填充:狭窄的特征:狭窄的沟槽,宽度小于30 nm,宽高比高达9:1可以使用表面活性剂催化的CVD工艺以自下而上的方式用铜或铜锰合金填充。保形的氮化锰(Mn 4N)层用作扩散阻挡层和粘附层。碘原子化学吸附在Mn4N层上,然后释放出来,在生长的铜层表面上起催化表面活性剂的作用,以实现无空隙,自下而上的填充。后退火后,合金中的锰会从铜中扩散出来,并在绝缘体的表面形成自对准的势垒。镀硅通孔的共形种子层:硅通孔(TSV)将加快互连速度芯片之间。可以使用气相沉积技术制备纵横比大于25:1的TSV孔中的共形,光滑且连续的种子层。 Mn4N通过CVD保形地沉积在二氧化硅表面上,以在Cu /绝缘体界面处提供强大的附着力。然后通过碘催化的直接液体注入(DLI)CVD工艺沉积共形的铜或Cu-Mn合金籽晶层。

著录项

  • 作者

    Au, Yeung.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号