首页> 外文学位 >Energy converting proteins in biomimetic systems: Construction and characterization.
【24h】

Energy converting proteins in biomimetic systems: Construction and characterization.

机译:仿生系统中的能量转换蛋白:构建和表征。

获取原文
获取原文并翻译 | 示例

摘要

Our aim was testing the feasibility of the next generation battery device which utilizes nature's most preserved energy conversion centers (electron/proton transporter proteins) in modifiable artificial environment. The proteins of interests are electron transporter, cytochrome c oxidase and light actuated proton pump, bacteriorhodopsin. In the assembled system, bacteriorhodopsin creates proton gradient upon the presence of light, converting light energy to chemical energy, then this chemical energy is consumed by cytochrome c oxidase to generate electrons. Eventually, these electrons are going to be attracted to the reservoir which serves as a battery.; To show the viability of the suggested nano-hybrid device, series of experiments were done to test the structure, network, and preserved protein functionality in these artificial membranes. Lipid vesicle system was first proved to maintain the enzymes' viability as the most nature-like artificial membrane. The activities of enzymes were shown by fluoremetric & spectrometric observations, and oxymeter. We explore the possibility of block copolymer membrane (ABA) as the alternative but more versatile biomimetic system. The ideal ratio among bacteriorhodopsin molecules, polymer molecules and the aqueous buffer was investigated. Considering the efficiency of the final device, an attempt to orient proton pumps (Bacteriorhodopsin) in the uni-direction was made by differentiating the pH condition of the buffer medium (pH≤2.35). The planar assembly of the functional biomimetic membranes was also tested by Langmuir-Blodgett method and impedance analysis and visualized under TEM and SEM. With some variability, enzymes were successfully reconstituted into the biomimetic membranes with preserved activities.; This study shows one more possibility of exploiting light energy from the sun by hybrid battery device composed of proteins and biomimetic membranes.
机译:我们的目标是测试下一代电池设备的可行性,该设备在可修改的人工环境中利用自然界保存最完好的能量转换中心(电子/质子转运蛋白)。感兴趣的蛋白质是电子转运蛋白,细胞色素C氧化酶和光致动质子泵,细菌视紫红质。在组装的系统中,细菌视紫红质在光的存在下产生质子梯度,将光能转化为化学能,然后该化学能被细胞色素c氧化酶消耗,产生电子。最终,这些电子将被吸引到用作电池的储存器中。为了显示建议的纳米混合设备的可行性,进行了一系列实验以测试这些人造膜中的结构,网络和保留的蛋白质功能。脂质囊泡系统首先被证明可以维持酶的活力,是最自然的人造膜。酶的活性通过荧光和光谱观察以及血氧计显示。我们探索嵌段共聚物膜(ABA)作为替代品但更具通用性的仿生系统的可能性。研究了细菌视紫红质分子,聚合物分子和水性缓冲液之间的理想比例。考虑到最终装置的效率,试图通过区分缓冲介质的pH条件(pH≤2.35)来使质子泵(细菌视紫红质)单向定向。还通过Langmuir-Blodgett方法和阻抗分析测试了功能性仿生膜的平面组装,并在TEM和SEM下可视化。具有一定的可变性,酶被成功地重构成具有保留活性的仿生膜。这项研究表明,通过由蛋白质和仿生膜组成的混合电池装置,可以利用来自太阳的光能。

著录项

  • 作者

    Lee, Hyeseung.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号