首页> 外文学位 >Towards on-site detection of nucleic acids for pathogen monitoring.
【24h】

Towards on-site detection of nucleic acids for pathogen monitoring.

机译:旨在现场检测核酸以进行病原体监测。

获取原文
获取原文并翻译 | 示例

摘要

As a leading cause of death in developing countries and a persistent problem elsewhere, pathogenic organisms are as ubiquitous as they are dangerous. Significant worldwide resources are directed toward their detection and eradication, leading to a broad coalition of government agencies, healthcare providers, academic researchers, and food manufacturers dedicated to providing the best-available prevention strategies for mitigating exposure risk. At the forefront of this effort is the field of pathogen detection. Our work directly addresses the current lack of simple, rapid, sensitive, and selective pathogen detection methods needed for frontline intervention in the most at-risk populations. To begin, we focused on the common food- and water-borne contaminant, E. coli. Using a resonance energy transfer system incorporating a bioluminescent protein and quantum dots, we demonstrated that adjacent hybridization of sequence-specific, labeled probes could detect E. coli 16s rRNA at concentrations as low as 2.1 nM in only 5 minutes. Continuing, we developed a paper-based platform for Epstein-Barr virus (EBV) detection using a target-bridged capture scheme in which EBER-1 RNA from EBV linked a tethered probe to a fluorescent reporter probe for a low nanomolar detection limit. Finally, we developed a novel tuberculosis (TB) biosensor in both microtiter plate and paper-based microfluidic platforms that utilized zinc finger proteins as selective capture reagents for the detection of two different TB DNA biomarkers. The dual-platform design afforded either quantitative (microtiter plate, 1.0-20.0 nM) or qualitative (paper microfluidic) detection. While divergent in design and target, these assays achieve the aims of current pathogen detection research while providing cost-effective options for deployment in resource-poor environments.
机译:作为发展中国家的主要死亡原因和其他地区的持久性问题,致病性生物无处不在,其危险性也很高。全球大量资源用于检测和根除这些疾病,导致政府机构,医疗保健提供者,学术研究人员和食品制造商组成了广泛的联盟,致力于提供最佳的预防策略来降低暴露风险。这项工作的最前沿是病原体检测领域。我们的工作直接解决了目前在最危险的人群中进行一线干预所需要的简单,快速,灵敏和选择性的病原体检测方法的不足。首先,我们将重点放在食物和水传播的常见污染物大肠杆菌上。使用结合了生物发光蛋白和量子点的共振能量转移系统,我们证明了序列特异性,标记探针的相邻杂交可以在短短5分钟内检测到低至2.1 nM浓度的大肠杆菌16s rRNA。继续,我们使用目标桥接捕获方案开发了一种基于纸的平台,用于爱泼斯坦-巴尔病毒(EBV)检测,其中来自EBV的EBER-1 RNA将束缚探针连接至荧光报告探针,以实现低纳摩尔检测限。最后,我们在微量滴定板和基于纸张的微流控平台上开发了一种新型的结核(TB)生物传感器,该平台利用锌指蛋白作为选择性捕获试剂来检测两种不同的TB DNA生物标记。双平台设计提供了定量(微量滴定板,1.0-20.0 nM)或定性(纸质微流体)检测。尽管这些检测方法在设计和目标上存在差异,但它们实现了当前病原体检测研究的目的,同时为在资源匮乏的环境中部署提供了经济高效的选择。

著录项

  • 作者

    Zhang, Daohong.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Analytical chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号