首页> 外文学位 >Investigation of Dispersive Kinetics in the Time-dependent Photoluminescence of Dyesensitized Nanoparticle Films.
【24h】

Investigation of Dispersive Kinetics in the Time-dependent Photoluminescence of Dyesensitized Nanoparticle Films.

机译:染料敏化纳米颗粒膜的时间依赖性光致发光中的分散动力学研究。

获取原文
获取原文并翻译 | 示例

摘要

Mesoporous titanium dioxide nanoparticle films sensitized with ruthenium polypyridal chromophores provide the main architectural framework of dye-sensitized solar cells. The design of these systems is based on the interfacial photoinduced charge separation that occurs when an excited chromophore transfers an electron to acceptor states within the semiconductor material. This process is also called electron injection. If electron injection cannot occur, the excited chromophore can relax through the emission of a photon. Therefore, observing the time-dependent photoluminescence decay of these systems can provide insight on the efficiency of the electron transfer process.;This dissertation investigates the dependence of the time-dependent photoluminescence decay on various factors using time-correlated single photon counting techniques with a home-built two-photon laser scanning setup. Interestingly, the time-dependent photoluminescence follows power-law kinetics when electron injection is most efficient. Power-law kinetics are a specific type of dispersive kinetics and several other dispersive kinetic models are also examined in this work.;By adjusting the electrolyte composition of these systems as well as applying an electrical bias, the kinetic drive for electron injection can be adjusted. As the kinetic drive for injection decreases, the observed kinetics become less dispserive. At no point, however, is there an observed unquenched, purely emissive population. It is suggested that cross-surface energy transfer provides an alternative route for excited state relaxation.;The current model for electron transfer is based upon electron injection into a continuum of acceptor states in the conduction band of the semiconductor. However, there exists an exponential distribution in energy of sub-bandgap acceptor states due to defects on the nanoparticle surface. The work presented in this dissertation provides evidence for a modification of the current model where chromophores are strongly coupled to only a small number of these localized trap states which lead to the dispersive kinetics we observe.
机译:用钌多吡啶基生色团敏化的中孔二氧化钛纳米颗粒薄膜提供了染料敏化太阳能电池的主要结构框架。这些系统的设计基于界面光诱导的电荷分离,当激发的发色团将电子转移到半导体材料内的受体态时,就会发生界面光诱导的电荷分离。此过程也称为电子注入。如果不能发生电子注入,则受激发的生色团可通过光子的发射而松弛。因此,观察这些系统随时间变化的光致发光衰变可以为电子传输过程的效率提供深刻的认识。本论文利用时间相关的单光子计数技术,研究了随时间变化的光致发光衰变对各种因素的依赖性。自制的两光子激光扫描设置。有趣的是,当电子注入效率最高时,随时间变化的光致发光遵循幂律动力学。幂律动力学是一种特定类型的色散动力学,并且在此工作中还研究了其他几种色散动力学模型。;通过调节这些系统的电解质成分以及施加电偏压,可以调节电子注入的动力学驱动力。随着注射的动力学驱动力降低,观察到的动力学具有较小的分散性。但是,在任何时候都没有观察到未淬火的,纯粹发射的人口。提出跨表面能量转移为激发态弛豫提供了另一种途径。电子转移的当前模型基于电子注入半导体导带中连续的受体态的过程。然而,由于纳米粒子表面上的缺陷,在亚带隙受体状态的能量中存在指数分布。本文提出的工作为目前模型的修改提供了证据,其中生色团仅与少数这些局部捕获态紧密耦合,从而导致我们观察到的分散动力学。

著录项

  • 作者

    McNeil, Ian James.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Physical chemistry.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号