首页> 外文学位 >CMOS compatible thin-film ALD tungsten nanoelectromechanical devices.
【24h】

CMOS compatible thin-film ALD tungsten nanoelectromechanical devices.

机译:CMOS兼容的薄膜ALD钨纳米机电器件。

获取原文
获取原文并翻译 | 示例

摘要

This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies.;The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures.;In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters.;Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.
机译:这项研究专注于开发一种新型的,低温,CMOS兼容,原子层沉积(ALD)的NEMS制造工艺,以开发ALD钨(WALD)NEMS器件。这些设备旨在用于CMOS / NEMS混合系统以及基于NEMS的微处理器/控制器,能够在标准CMOS技术无法访问的恶劣环境中可靠运行。迄今为止,大多数NEMS开关/设备都基于碳纤维。 -纳米管(CNT)设计。该器件在致动期间消耗的功率很小,并且正如预期的那样,已证明其致动电压比MEMS开关小得多。不幸的是,由于NEMS CNT开关的生长需要高温,因此它们通常不能与CMOS集成,并且它们的制造通常导致极低且不可预测的良率。薄膜NEMS器件比已报道的CNT器件具有很多优势,原因如下:包括更高的制造良率,诸如ALD之类的低温(CMOS兼容)沉积技术以及对设计参数/器件性能指标(即器件几何形状)的增强控制。此外,自上而下的薄膜纳米制造技术比基于CNT的工艺更能产生复杂的器件几何形状,从而使多端子开关的设计和开发非常适合于低功率混合NEMS / CMOS系统,例如以及在温度/辐射硬计算体系结构中使用的机电晶体管和逻辑器件。在这项工作中,开发了几种新颖的,低温,CMOS兼容制造技术,这些技术采用WALD作为MEMS或NEMS器件的结构层。所开发的技术是基于通常用于制造MEMS器件的传统微加工技术的自上而下的纳米级制造工艺。使用这些工艺,已经成功地制造和表征了多种新颖的WALD NEMS设备。使用两种不同的WALD制造技术,已经开发了两代2端子WALD NEMS开关。这些器件的功能间隙高度为30-50 nm,驱动电压通常为3--5伏。通过扩展两端子WALD技术,开发了新颖的三端子WALD NEMS设备。这些设备的驱动电压范围为1.5--3 V,可靠性超过200万个周期,并且被设计为WALD NEMS互补逆变器的基本构建模块。通过这些设备的开发,在建模和开发方面取得了一些进步薄膜NEMS器件的设计得以实现。开发了一种新模型,以更好地表征通常用于具有纳米级栅源间隙高度的NEMS开关的预激励电流。开发的模型是标准场发射模型的扩展,并考虑了机电响应以及薄膜NEMS开关特有的电场效应。最后,建立了一个基于多物理场FEM / FD的模型来模拟2或3端静电驱动设备的动态行为,这些设备的静电域的长宽比约为10-3。该模型使用拟拉格朗日有限差分法在准静态变形域中求解拉普拉斯方程。该模型允许使用基于非专业BEM / FEM的典型软件对数字化NEMS薄膜器件进行数值表征和设计。使用该模型,发现了几种新颖且可行的设计,可用于构建互补式逆变器的固定式3端子WALD NEMS开关。

著录项

  • 作者

    Davidson, Bradley Darren.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 455 p.
  • 总页数 455
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号